Latent Dirichlet Allocation-based Diversified Retrieval for E-commerce Search.
Date:
Diversified retrieval is a very important problem on many e-commerce sites, e.g. eBay and Amazon. Using IR approaches without optimizing for diversity results in a clutter of redundant items that belong to the same products. Most existing product taxonomies are often too noisy, with overlapping structures and non-uniform granularity, to be used directly in diversified retrieval. To address this problem, we propose a Latent Dirichlet Allocation (LDA) based diversified retrieval approach that selects diverse items based on the hidden user intents.