
Graph Neural Networks for Friend Ranking
in Large-scale Social Platforms

Aravind Sankar
University of Illinois at Urbana-Champaign

asankar3@illinois.edu

Yozen Liu, Jun Yu, Neil Shah
Snap Inc.

{yliu2,jyu3,nshah}@snap.com

ABSTRACT

Graph Neural Networks (GNNs) have recently enabled substantial
advances in graph learning. Despite their rich representational ca-
pacity, GNNs remain under-explored for large-scale social modeling
applications. One such industrially ubiquitous application is friend
suggestion: recommending users other candidate users to befriend,
to improve user connectivity, retention and engagement. However,
modeling such user-user interactions on large-scale social platforms
poses unique challenges: such graphs often have heavy-tailed de-
gree distributions, where a significant fraction of users are inactive
and have limited structural and engagement information. More-
over, users interact with different functionalities, communicate with
diverse groups, and have multifaceted interaction patterns.

We study the application of GNNs for friend suggestion, pro-
viding the first investigation of GNN design for this task, to our
knowledge. To leverage the rich knowledge of in-platform actions,
we formulate friend suggestion asmulti-faceted friend ranking with
multi-modal user features and link communication features. We
design a neural architecture GraFRank to learn expressive user rep-
resentations from multiple feature modalities and user-user interac-
tions. Specifically, GraFRank employs modality-specific neighbor
aggregators and cross-modality attentions to learnmulti-faceted user
representations. We conduct experiments on two multi-million user
datasets from Snapchat, a leading mobile social platform, where
GraFRank outperforms several state-of-the-art approaches on can-
didate retrieval (by 30% MRR) and ranking (by 20% MRR) tasks.
Moreover, our qualitative analysis indicates notable gains for criti-
cal populations of less-active and low-degree users.

CCS CONCEPTS

• Information systems → Social networking sites; Social net-
works; Social recommendation; Social networks; • Human-

centered computing→ Social recommendation.

KEYWORDS

Graph Neural Network, Social Network, Recommendation System

ACM Reference Format:

Aravind Sankar and Yozen Liu, Jun Yu, Neil Shah. 2021. Graph Neural
Networks for Friend Ranking in Large-scale Social Platforms. In Proceedings
of the Web Conference 2021 (WWW ’21), April 19–23, 2021, Ljubljana, Slovenia.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3442381.3450120

This paper is published under the Creative Commons Attribution 4.0 International
(CC-BY 4.0) license. Authors reserve their rights to disseminate the work on their
personal and corporate Web sites with the appropriate attribution.
WWW ’21, April 19–23, 2021, Ljubljana, Slovenia
© 2021 IW3C2 (International World Wide Web Conference Committee), published
under Creative Commons CC-BY 4.0 License.
ACM ISBN 978-1-4503-8312-7/21/04.
https://doi.org/10.1145/3442381.3450120

1 INTRODUCTION

Learning latent user representations has become increasingly im-
portant in advancing user understanding, with widespread adop-
tion in various industrial settings, e.g., video recommendations on
YouTube [10], pin suggestions on Pinterest [50] etc. The user repre-
sentations learned using deepmodels are effective at complementing
or replacing conventional collaborative filtering methods [22], and
are versatile, e.g., the embeddings can be used to suggest friendships
and also infer profile attributes (e.g., age, gender) in social networks.

Learning latent representations of nodes in graphs has promi-
nent applications in multiple academic settings, such as link pre-
diction [53], community detection [8], and industrial recommender
systems, including e-commerce [44, 45], content discovery [49, 50],
and food delivery [24]. Graph Neural Networks (GNNs) [47] have
emerged as a popular graph representation learning paradigm due
to their ability to learn representations combining graph structure
and node/link attributes, without relying on expensive feature engi-
neering. GNNs can be formulated as a message passing framework
where node representations are learned by propagating features
from local graph neighborhoods via trainable neighbor aggregators.
Recently, GNNs have demonstrated promising results in a few indus-
trial systems designed for item recommendations in bipartite [50]
or multipartite [49] user-to-item interaction graphs.

Despite their rich representational ability, GNNs have been rela-
tively unexplored in large-scale user-user social interactionmodeling
applications, like friend suggestion. Recommending new potential
friends to encourage users to expand their networks, is a corner-
stone of social networking, and plays an important role towards
user retention, and promoting engagement within the platform.

Prior efforts typically formulate friend suggestion as link predic-
tion (or matrix completion) with a rich literature of graph-based
heuristics [31] to quantify user-user affinity, e.g., two users are more
likely to connect if they have many common friends. A few GNN
models target link prediction by learning aggregators over enclos-
ing subgraphs around each candidate link [52–54]; such models
do not scale to industry-scale social graphs with over millions of
nodes and billions of edges. Still, GNNs have enormous potential
for learning expressive user representations in social networks, due
to their intuitive message-passing paradigm that enables attention
to social influence from friends in their ego-network.

Yet, designing GNNs for friend recommendations in large-scale
social platforms poses unique challenges. First, social networks are
characterized by heavy-tailed degree distributions, e.g., many net-
works approximately follow power-law distributions [3]. This poses
a key challenge of limited structural information for a significant
proportion of users with very few friends. A related challenge is
activity sparsity where a very small fraction of users actively form
new friendships at any given time. Second, modern social platforms

https://doi.org/10.1145/3442381.3450120
https://doi.org/10.1145/3442381.3450120

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Sankar et al.

offer a multitude of avenues for users to interact, e.g., users can
communicate with friends either by directly exchanging messages
and pictures, or through indirect social actions by liking and com-
menting on posts. Extracting knowledge from such heterogeneous
in-platform user actions is challenging, yet extremely valuable to
address sparsity challenges for a vast majority of inactive users.

Present Work: We overcome structural and interactional spar-
sity by exploiting the rich knowledge of heterogeneous in-platform
actions. We formulate friend recommendation on social networks
as multi-faceted friend ranking on an evolving friendship graph,
with multi-modal user features and link communication features
(Figure 1). We represent users with heterogeneous feature sets
spanning multiple modalities, that include a collection of static pro-
file attributes (e.g., demographic information) and time-sensitive
in-platform activities (e.g., content interests and interactions). We
also leverage pairwise link features on existing friendships, which
capture recent communication activities across multiple direct (e.g.,
messages) and indirect (e.g., stories) channels within the platform.

To understand the complexity of user interactions and gain in-
sights into various factors impacting friendship formation, we con-
duct an empirical analysis to investigate attribute homophily with
respect to different user feature modalities. Our analysis reveals
diverse homophily distributions across modalities and users, and indi-
cates non-trivial cross-modality correlations. Motivated by these ob-
servations, we design an end-to-end GNN architecture, GraFRank
(Graph Attentional Friend Ranker) for multi-faceted friend ranking.

GraFRank learns user representations bymodality-specific neigh-
bor aggregation and cross-modality attention. We handle hetero-
geneity in modality homophily by learning modality-specific neigh-
bor aggregators to compute a set of representations for each user;
the aggregator is modeled by friendship attentions to capture the
influence of individual features and pairwise communications. We
introduce a cross-modality attention module to compute the final
user representation by attending over the modality-specific repre-
sentations of each user, thereby learning non-linear correlations
across modalities. We summarize our key contributions below:
• Graph-Neural Friend Ranking: To our knowledge, ours is the
first work to investigate graph neural network usage and design
for social user-user interaction modeling applications. Unlike
prior work that typically view friend recommendation as struc-
tural link prediction, we present a novel formulation with multi-
modal user features and link features, to leverage knowledge of
rich heterogeneous user activities in social networking platforms.
• GraFRank Model: Motivated by our empirical study that re-
veals heterogeneity in modality homophily and cross-modality
correlations, we design a neural architecture, GraFRank, to learn
multi-faceted user representations. Distinct from conventional
GNNs operating on a single feature space, GraFRank learns from
multiple feature modalities and user-user interactions.
• Robust Experimental Results: Our extensive experiments on
two large-scale datasets from a popular social networking plat-
form Snapchat, indicate significant gains for GraFRank over
state-of-the-art baselines on friend candidate retrieval (relative
MRR gains of 30%) and ranking (relative MRR gains of 20%) tasks.
Our qualitative analysis indicates stronger gains for a large, but
especially crucial population of less-active and low-degree users.

2 RELATEDWORK

We briefly review a few related lines of work on friend recommen-
dations, graph neural networks, and multi-modal learning.

FriendRecommendation: The earliest methods were carefully
designed graph-based heuristics of user-user proximity in social
networks [31], e.g., path-based Katz centrality [26] or common
neighbor-based Adamic/Adar [1]. Supervised learning techniques
exploited a collection of such pairwise features to train ranking
models [12, 34]. However, extracting heuristic features on-the-fly
for each potential link is infeasible in large-scale evolving networks.

Recently, graph embedding methods learn latent node represen-
tations to capture the structural properties of a node and its neigh-
borhoods [11], e.g., popular embedding models like node2vec [16]
and Deepwalk [35] learn unsupervised embeddings to maximize
the likelihood of co-occurrence in fixed-length random walks, and
have shown effective link prediction performance. Since graph
embedding methods learn latent embeddings per node, the num-
ber of model parameters scales with the size of the graph, which is
prohibitive for large-scale networks with over multi-million users.

A related direction is social recommendation [13, 29, 38], which
utilizes the social network as an auxiliary data source to model
user behavior in social platforms [39, 42, 48] and improve quality
of item recommendations to users. In contrast, our problem, friend
suggestion is a user-user recommendation task that is complemen-
tary to social recommendation, since it facilitates creating a better
social network of users to benefit social recommendation.

Graph Neural Networks: GNNs learn node representations by
recursively propagating features (i.e., message passing) from local
neighborhoods through the use of aggregation and activation func-
tions [36, 47]. Graph Convolutional Networks (GCNs) [28] learn
degree-weighted aggregators by operating on the graph Lapla-
cian. Many models generalize GCN with a variety of learnable
aggregators, e.g., self-attentions [43], mean and max pooling func-
tions [17, 18]; these approaches have consistently outperformed em-
bedding techniques based upon random walks [16, 35]. In contrast
to most GNN models that store the entire graph in GPU memory,
GraphSAGE [17] is an inductive variant that reduces memory foot-
print by sampling a fixed-size set of neighbors in each GNN layer.
A few scalable extensions include minibatch training with variance
reduction [6, 23], subgraph sampling [51], and graph clustering [9].

Despite the successes of GNNs, very few industrial systems have
developed large-scale GNN implementations. One recent system,
PinSage [50] extends GraphSAGE to user-item bipartite graphs in
Pinterest; MultiSage [49] extends PinSage to multipartite graphs.

However, GNNs remain unexplored for large-scale user-user so-
cial modeling applications where users exhibit multifaceted behav-
iors by interacting with different functionalities on social platforms.
In our work, we design GNNs for the important application of friend
suggestion, through a novel multi-faceted friend ranking formulation
with multi-modal user features and link communication features.

Multi-Modal Learning: Deep learning techniques have been
explored for multi-modal feature fusion over diverse modalities
such as text, images, video, and graphs [14, 25]. Specifically, multi-
modal extensions of GNNs have recently been examined in micro-
video recommendation [46] and urban computing [15] applications.
Unlike prior work that regard modalities as largely independent

Graph Neural Networks for Friend Ranking in Large-scale Social Platforms WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

data sources, user feature modalities in social networks tend to
be correlated. In this work, we model non-linear cross-modality
correlations to learn multi-faceted user representations.

3 PRELIMINARIES

We first formulate the problem of multi-faceted friend ranking in
large-scale social platforms (Section 3.1) and then briefly introduce
relevant background on graph neural networks (Section 3.2).

3.1 Problem Formulation

In this section, we introduce the different information sources in a
social platform that are relevant to friend suggestion. Each individ-
ual in the platform is denoted by a user 𝑢 or 𝑣 and a pair of users
(𝑢, 𝑣) may be connected by a friendship, which is an undirected
relationship, i.e., if 𝑢 is a friend of 𝑣 , 𝑣 is also a friend of 𝑢. We
assume a set of users V introduced until our latest observation
time of the platform. The friendship graph G evolves when new
friendships form and when new users join the platform. Here, we
only consider the emergence of new users and friendships while
leaving the removal of existing users and edges as future work.

Prior work typically represent a dynamic network as a sequence
of static snapshots, primarily due to scaling concerns. However,
graph snapshots are coarse approximations of the actual continuous-
time network and rely on a user-specified discrete time interval
for snapshot creation [40, 41]. We also assume multiple time-aware
user-level features (across modalities) and link(edge)-level features
capturing pairwise user-user communications. In industrial settings,
such features are commonly extracted by routine batch jobs and
populated in an upstream database at regular time intervals (e.g.,
daily batch inference jobs), to facilitate efficient model training.

Thus, we adopt a hybrid data model that achieves the best of both
worlds. We formulate the friendship graph as a continuous-time
dynamic graph (CTDG) with the expressivity to record friendships
at the finest possible temporal granularity; and represent features
as a sequence of daily snapshots where the time-sensitive features
(e.g., engagement activity) are recorded at different time scales.

FriendshipGraph: Let us consider an observation timewindow
(𝑡𝑠 , 𝑡𝑒) such that friendships created in this window specify the
training data for the friend ranking model. We divide this window
(𝑡𝑠 , 𝑡𝑒) into a sequence of 𝑆 daily snapshots, denoted by 1, 2, . . . , 𝑆 .
Formally, we model the friendship graph G as a timed sequence of
friend creation events over the entire time range (0, 𝑡𝑒), defined as:

Definition 3.1 (Friendship Graph). Given a graph G = (V, E,T),
letV be the set of users, E ⊆ V ×V × R be the set of friendship
links between users in G. At the finest granularity, each link 𝑒 =
(𝑢, 𝑣, 𝑡) ∈ E is assigned a unique timestamp 𝑡 ∈ R+; 0 < 𝑡 < 𝑡𝑒 that
denotes the link creation time, and T : R+ ↦→ [0, 𝑆] is a function
that maps each timestamp 𝑡 to a corresponding snapshot in [0, 𝑆].

Here, the window (𝑡𝑠 , 𝑡𝑒) corresponds to snapshots [1, 𝑆] and
snapshot 0 is a placeholder for any 𝑡 < 𝑡𝑠 , while the graph G
includes all friendships with time-stamped links in (0, 𝑡𝑒). The set
of temporal neighbors of user 𝑣 at time 𝑡 includes friends created
before 𝑡 , defined as 𝑁𝑡 (𝑣) = {𝑤 : 𝑒 = (𝑣,𝑤, 𝑡 ′) ∈ E ∧ 𝑡 ′ < 𝑡}.

Multi-Modal Evolving User Features: In a social platform,
users typically use multiple functionalities, such as posting videos,

Pairwise Communications

Profile Attributes

Content Interests

Friending Activity

Engagement Activity

MULTI-MODALUSERFEATURES

𝒙!"

𝒙!#

𝒙!$

𝒙!%
u

v
𝑡!"

𝑡!!
𝑡#

𝑡"

𝑡$

𝑡%
𝑡!

𝑡!$

𝑡!&
𝑡!' 𝑡!(

𝑡&

𝑡'

𝑡(

𝑡)

𝑡!*

𝑡!%

𝑡*

LINKCOMMUNICATIONFEATURES
𝒆𝒖𝒗

SOCIAL FRIENDSHIPGRAPH

Figure 1: Desiderata for Multi-faceted Friend Ranking: tem-

porally evolving friendship graph with multi-modal user

features and pairwise link communication features.

exchanging messages with friends, or liking and sharing posts,
which are indicative of their stable traits and mutable interests. We
extract user attributes spanning a total of 𝐾 = 4 modalities, which
include profile attributes, in-app interests, friend creation activities,
and user engagement activities, described in detail below:
• Profile Attributes: a set of (mostly) static demographic features
describing the user, including age, gender, recent locations, lan-
guages, etc., that are listed or inferred from their profile.
• Content Interests: a real-valued feature vector describing the tex-
tual content (e.g., posts, stories) interacted by the user within the
platform, e.g., topics of stories viewed by the user on Snapchat.
• Friending Activity: aggregated number of sent/received friend
requests, reciprocated friendships, and viewed suggestions of the
user in different time ranges (e.g., daily, weekly, and monthly).
• Engagement Activity: aggregated number of in-app direct and
indirect engagements for the user (e.g., text messages, snaps, and
comments on posts) with other friends in different time ranges.
The user feature modalities include a combination of static and

time-sensitive features, i.e., the profile attributes are static while the
rest of the modalities are time-sensitive and often evolve at different
scales across users, e.g., a long-time active user may frequently
communicate with a stable set of friends, while a new user is more
likely to quickly add new friends before communicating.

The feature vector of a user 𝑢 ∈ V in snapshot 𝑠 ∈ [1, 𝑆] is
defined by x𝑠𝑣 = [x𝑠,1𝑣 , . . . , x𝑠,𝐾𝑣] where x𝑠,𝑘𝑣 ∈ R𝐷𝑘 is the 𝑘-th user
feature modality and [·] denotes row-wise concatenation.

Pairwise Link Communication Features: Social networks
comprise two predominant types of communication channels: con-
versations and social actions. Conversations include exchanges of
text messages and media content with friends, which indicate di-
rect user-user communications. In contrast, social actions facilitate
indirect user-user interactions, e.g., posting a Snapchat Story or
liking a Facebook post results in a passive broadcast to friends.

For conversational channels, we extract bidirectional link fea-
tures reflecting the number of communications sent and received
by each pair of users (who are friends). We capture indirect social
actions by recording the number of actions of each type per friend.
Similar to user features, we extract link features per snapshot by
aggregating communications at different time intervals. The link
feature vector for a pair of users (𝑢, 𝑣) at time 𝑡 (who became friends
before 𝑡), is denoted by e𝑠𝑢𝑣 ∈ R𝐸 where 𝑠 = T (𝑡) is the snapshot
associated with time 𝑡 and 𝐸 is the cardinality of link features.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Sankar et al.

User Feature Modality
0.60

0.65

0.70

0.75

0.80

0.85

M
od

al
ity

 H
om

op
hi

ly

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
User Cluster Centroids

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

M
od

al
ity

 H
om

op
hi

ly

Profile Attributes Content Interests Friending Activity Engagement Activity

Figure 2: Users exhibit different extents of homophily across

feature modalities. (a) Overall modality homophily scores,

with 95% confidence interval bands (b) five representative

cluster centroids identified by clustering users based on

their homophily distributions over the 𝐾 modalities.

We formally define the problem of multi-faceted friend ranking
in large-scale social platforms, over friendship graph G with multi-
modal user features and pairwise link features, as follows:

Problem (Multi-Faceted Friend Ranking). Leverage multi-
modal user features {x𝑠𝑣 : 𝑣 ∈ V, 1 ≤ 𝑠 ≤ 𝑆}, link features {e𝑠𝑢𝑣 :
𝑠 = T (𝑡), (𝑢, 𝑣, 𝑡) ∈ E} and friendship graph G, to generate user
representations {h𝑣 (𝑡) ∈ R𝐷 : 𝑣 ∈ V} at time 𝑡 , that facilitate friend
suggestion tasks of candidate retrieval and re-ranking.

3.2 Background on GNNs

We briefly introduce a generic formulation of a graph neural net-
work layer with message-passing for neighborhood aggregation.

GNNs use multiple layers to learn node representations. At each
layer 𝑙 > 0 (𝑙 = 0 is the input layer), GNNs compute a representation
for node 𝑢 by aggregating features from its neighborhood, through
a learnable aggregator 𝐹𝜃,𝑙 per layer. Stacking 𝑘 layers allows the
𝑘-hop neighborhood of a node to influence its representation.

h𝑢,𝑙 = 𝐹𝜃,𝑙
(
h𝑢,𝑙−1, {h𝑣,𝑙−1}

)
, 𝑣 ∈ 𝑁 (𝑢) (1)

Equation (1) indicates that the embedding h𝑢,𝑙 ∈ R𝐷 for node 𝑢
at the 𝑙-th layer is a non-linear aggregation of its embedding h𝑢,𝑙−1
from layer 𝑙 − 1 and the embeddings of its immediate neighbors
𝑣 ∈ N (𝑢). The function 𝐹𝜃,𝑙 defines the message-passing function
at layer 𝑙 and can be instantiated using a variety of aggregators,
including graph convolution [28], attention [43], and pooling [17].
The node representation for 𝑢 at the input layer is h𝑢,0, where
h𝑢,0 = x𝑢 ∈ R𝐷 . The representation of node 𝑢 at the final GNN
layer is typically trained using a supervised learning objective.

The above formulation (Equation 1) operates under the assump-
tion of a static graph and a single static input feature vector per
node. In contrast, our setting involves a time-evolving friendship
graph G with pairwise link features and multi-modal node features.

4 GRAPH NEURAL FRIEND RANKING

In this section, we present our approach to inductively learn user
representations in a dynamic friendship graph with pairwise link
features and time-sensitive multi-modal node features.

We first conduct an empirical analysis on user feature modalities,
to gain insights into various factors impacting friendship forma-
tion (Section 4.1). We then formulate the design choices of our
model GraFRank for friend ranking based on our acquired insights
(Section 4.2), followed by model training details (Section 4.3)

4.1 Motivating Insight: Modality Analysis

We conduct an empirical study that helps us formulate the design
choices in our model. We aim to validate the existence and under-
stand the extent and variance of attribute homophily with respect
to the different user feature modalities. We begin by analyzing
users’ ego-networks to characterize modality homophily, both over-
all and broken-down across different user segments. The definition
of modality homophily echoes the standard definition of attribute
homophily [33], but generalized to include a modality of attributes,
i.e., the tendency of users in a social graph to associate with others
who are similar to them along attributes of a certain modality.

We define a homophily measure m𝑘𝑢𝑣 between a user 𝑢 and her
friend 𝑣 on modality 𝑘 by the standard cosine similarity [2], which
is a normalized metric that accounts for heterogeneous activity
across users. We compute a modality homophily score m𝑘𝑢 for user
𝑢 on modality 𝑘 by the mean over all her neighbors, defined by:

m𝑘𝑢 =
1
|𝑁𝑢 |

∑
𝑣∈𝑁𝑢

m𝑘𝑢𝑣 m𝑘𝑢𝑣 = 𝑐𝑜𝑠 (x𝑘𝑢 , x𝑘𝑣) (2)

Note that we omit the snapshot 𝑠 above since the discussion
is restricted to a single feature snapshot. Figure 2 (a) shows the
overall modality homophily scores (averaged across all users), for
each of the 𝐾 modalities. We observe differing extents of attribute
homophily across modalities, with higher variance for the time-
sensitive modalities (e.g., friending and engagement activities).

We further extend our analysis to examine the homophily dis-
tribution over modalities at the granularity of individual users, to
understand if modality homophily varies across different users.
We first represent each user 𝑢 by a 𝐾-dimensional modality vector
m𝑢 = [m1

𝑢 , . . . ,m𝐾𝑢] that describes the homophily distribution over
𝐾 modalities. We then use 𝑘-means [19] to cluster the user setV
based on their modality vectors. Figure 2 (b) shows the centroids
of five representative clusters. We observe stark differences in the
modality vector centroids across the five clusters, indicating the
existence of user segments with diverse homophily distributions
over the 𝐾 modalities. This motivates our first key observation:

Observation 1 (Heterogeneity in Modality Homophily).
Users exhibit different extents of homophily across modalities, and the
homophily distribution over modalities varies across user segments.

Each modality enables identification of a subset of friends that
exhibit modality homophily. However, this poses a question: do the
𝐾 modalities induce the same (or disparate) subsets of homophilous
friends, or are the friends that exhibit homophily in each modality,
correlated? We now investigate this relationship in this section.

For every modality 𝑘 , we cluster the ego-network (set of di-
rect friends) 𝑁 (𝑢) of each user 𝑢, which is represented as a set of
modality-specific vectors {x𝑘𝑣 ∈ R𝐷𝑘 : 𝑣 ∈ 𝑁 (𝑢)}; this results in
ego-clustering assignments permodality. To quantify cross-modality

Graph Neural Networks for Friend Ranking in Large-scale Social Platforms WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

M0 M1 M2 M3
User Feature Modality

M0

M1

M2

M3

U
se

r F
ea

tu
re

 M
od

al
ity

Normalized Mutual Information (NMI)

M0 M1 M2 M3
User Feature Modality

M0

M1

M2

M3

U
se

r F
ea

tu
re

 M
od

al
ity

Adjusted Rand Index (ARI)

0.5

0.6

0.7

0.8

0.9

1.0

0.2

0.4

0.6

0.8

1.0

Figure 3: Cross-modality Correlation Study: NMI (a) andARI

(b) metrics for each pair of modalities, quantifying pairwise

correlation by consensus in ego-clustering assignments (ob-

tained independently with respect to eachmodality). We ob-

serve substantial correlations across pairs of modalities.

correlations, we compute a correlation score for each pair of modali-
ties by the consensus between their ego-clustering assignments.

We use two standard measures: Normalized Mutual Informa-
tion (NMI) and Adjusted Rand Index (ARI) to evaluate consensus
between clusterings [4]. NMI measures the statistical correlation be-
tween two clustering assignments; however, NMI increases with the
number of distinct clusters. ARI measures the percentage of correct
pairwise assignments, and is chance-corrected with an expected
value of zero. Note that NMI and ARI are symmetric metrics.

Figure 3 depicts average NMI and ARI scores for each pair of
feature modalities. We observe substantial correlation in cluster
assignments across a few modalities (e.g., time-sensitive modalities
𝑀1 and𝑀3) while some (e.g., static modality𝑀0) are quite distinct
from the rest. Our key takeaway regarding modality correlation is:

Observation 2 (Cross-Modality Correlation). Non-trivial
correlations exist between pairs of feature modalities, as indicated by
the consensus in their induced clusterings of ego-networks.

4.2 GraFRank: Multi-Faceted Friend Ranking

In this section, we first introduce the key components of our model
GraFRank (Graph Attention Friend Ranker) for friend ranking. Our
modeling choices in designing a multi-modal GNN, directly follow
from our observations. GraFRank has two modules (Figure 5):
• Modality-specific neighbor aggregation.
• Cross-modality attention layer.

Below, we present a detailed description of each module.

4.2.1 Modality-specific Neighbor Aggregation. Since the dif-
ferent modalities vary in the extent of induced homophily (Obser-
vation 1), we treat each modality individually as opposed to the
popular choice of combining all features by concatenation. Thus,
we learn a modality-specific representation z𝑘𝑢 (𝑡) ∈ R𝐷 for each
user 𝑢 ∈ V at time 𝑡 ∈ R+, that encapsulates information from
modality 𝑘 . Each user 𝑢 flexibly prioritizes different friends in her
temporal neighborhood 𝑁𝑡 (𝑢), thereby accounting for the variance
in homophily distribution across user segments.

We design a modality-specific neighbor aggregation module to
compute 𝐾 representations {z1𝑢 (𝑡), . . . , z𝐾𝑢 (𝑡)}, z𝑘𝑢 (𝑡) ∈ R𝐷 for each
user 𝑢 ∈ V at time 𝑡 ∈ R+, where each z𝑘𝑢 (𝑡) is obtained using an
independent and unique message-passing function per modality.

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of friends

0

5

10

15

20

25

30

N
um

er
 o

f u
se

rs
 (x

 1
00

0)

Chat Rate

0.0 0.2 0.4 0.6 0.8 1.0
Percentage of friends

0

2

4

6

8

10

12

14

16

N
um

er
 o

f u
se

rs
 (x

 1
00

0)

Snap Rate

Figure 4: Friend communication rate in two direct chan-

nels (Chat, Snap) on Snapchat. Most users communicate fre-

quently only with a subset (≤ 20%) of their friends, making

influence modeling critical during neighbor aggregation.

We begin by describing a single layer, which consists of two ma-
jor operations: message propagation and message aggregation. We
subsequently discuss generalization to multiple successive layers.

Message Propagation: We define the message-passing mecha-
nism to aggregate information from the ego-network 𝑁𝑡 (𝑢) of user
𝑢 at time 𝑡 . Specifically, the propagation step for modality 𝑘 aggre-
gates the 𝑘-th modality features {x𝑠,𝑘𝑣 : 𝑣 ∈ 𝑁𝑡 (𝑢), 𝑠 = T (𝑡)} from
the corresponding snapshot 𝑠 = T (𝑡) of temporal neighbors 𝑁𝑡 (𝑢).
To quantify the importance of each friend 𝑣 in the ego-network, we
propose a friendship attention [37, 43] which takes embeddings x𝑠,𝑘𝑢
and x𝑠,𝑘𝑣 as input, and computes an attentional coefficient 𝛼𝑘 (𝑢, 𝑣, 𝑡)
to control the influence of friend 𝑣 on user 𝑢 at time 𝑡 , given by:

𝛼𝑘 (𝑢, 𝑣, 𝑡) = LeakyRELU
(
a𝑇
𝑘

(
𝑾𝑘

1 x
𝑠,𝑘
𝑢 | | 𝑾𝑘

1 x
𝑠,𝑘
𝑣

))
𝑠 = T (𝑡) (3)

where𝑾𝑘
1 ∈ R

𝐷𝑘×𝐷 is a shared linear transformation applied
to each user, | | is the concatenation operation, and the friendship
attention is modeled as a single feed-forward layer parameterized
byweight vector a𝑘 ∈ R2𝐷 followed by the LeakyReLU nonlinearity.
We then normalize the attentional coefficients across all friends
connected with 𝑢 at time 𝑡 by adopting the softmax function:

𝛼𝑘 (𝑢, 𝑣, 𝑡) =
exp

(
𝛼𝑘 (𝑢, 𝑣, 𝑡)

)∑
𝑤∈𝑁𝑡 (𝑢) exp

(
𝛼𝑘 (𝑢,𝑤, 𝑡)

) (4)

We now define an ego-network representation z𝑘𝑢
(
𝑡, 𝑁𝑢 (𝑡)

)
∈

R𝐷𝑘 for user 𝑢 in modality 𝑘 that captures messages propagated
from first-order neighbors in the ego-network 𝑁𝑢 (𝑡). The message
m𝑘𝑢←𝑣 ∈ R𝐷 propagated from friend 𝑣 to user 𝑢 at time 𝑡 is defined
as the transformed friend embedding, i.e., m𝑘𝑢←𝑣 = 𝑾𝑘

1 x
𝑠,𝑘
𝑣 . We

then compute z𝑘𝑢
(
𝑡, 𝑁𝑢 (𝑡)

)
through a weighted average of message

embeddings from each friend 𝑣 ∈ 𝑁𝑢 (𝑡) and guided by normalized
friendship weights 𝛼𝑘 (𝑢, 𝑣, 𝑡), which is defined as:

z𝑘𝑢
(
𝑡, 𝑁𝑢 (𝑡)

)
=

∑
𝑣∈𝑁𝑢 (𝑡)

𝛼𝑘 (𝑢, 𝑣, 𝑡)m𝑘𝑢←𝑣 (5)

In the above equation, the friendship weights are learnt merely
from the connectivity of the ego-network. In reality, most users have
very few close friends, and users with many friends only frequently
communicate with a few of them. We empirically validate this by
examining friend communication rate, defined by the percentage of
friends that a user has communicated with at least once (directly
sent a Chat/Snap with on Snapchat) in a one-month window. From

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Sankar et al.

…𝛼!"(𝑢, 1, 𝑡) 𝛼!"(𝑢, 5, 𝑡)

u

1

2

5

4

3

u

1

2

5

4

3

…

ATTENTIONAL NEIGHBORHOOD
AGGREGATION (MODALITY 1)

ATTENTIONAL NEIGHBORHOOD
AGGREGATION (MODALITYK)

ATTENTION OVER USER FEATURE MODALITIES

𝒉!(𝑡)

𝒛!"	(𝑡) 𝒛!# (𝑡)
𝛽#$(𝑡) 𝛽#"(𝑡)

…

𝒙!"

…𝒙""

𝒆!""
𝒙#"

𝒆!#"

𝑓$%%"

…

𝒙!$

…𝒙"$

𝒆!"$
𝒙#$

𝒆!#$

𝑓$%%#

…

Profile Attributes

Content Interests

Friending Activity

Engagement Activity

𝒙!"

𝒙!&

𝒙!'

𝒆𝒖𝒗

Pairwise Communications

𝒙!*

Modality Attention Weights

GRAFRANK

…𝛼$ (𝑢, 1, 𝑡) 𝛼$ (𝑢, 5, 𝑡)

Figure 5: Overall framework of GraFRank: a set of 𝐾 modality-specific neighbor aggregators (parameterized by individual

modality-specific user features and link communication features) to compute 𝐾 intermediate user representations; cross-

modality attention layer to compute final user representations by capturing discriminative facets of each modality.

Figure 4, we find that a vast majority of users communicate with
a small percentage (10-20%) of their friends; thus, we posit that
friendship activeness is critical to precisely model user affinity.

Towards this goal, we incorporate pairwise link communication
features to parameterize both the attentional coefficients and the
message aggregated from friends in the ego-network. Specifically,
we formulate the message m𝑘𝑢←𝑣 ∈ R𝐷 from friend 𝑣 to user 𝑢 at
time 𝑡 as a function of both friend feature x𝑠,𝑘𝑣 and link feature e𝑠𝑢𝑣 .

m𝑘𝑢←𝑣 =𝑾𝑘
2 x

𝑠,𝑘
𝑣 +𝑾𝑘

𝑒 e
𝑠
𝑢𝑣 + b 𝑠 = T (𝑡) (6)

where𝑾𝑘
2 ∈ R

𝐷𝑘×𝐷 ,𝑾𝑘
𝑒 ∈ R𝐸×𝐷 are trainable weight matrices

operating on the user and link features respectively, and b ∈ R𝐷
is a learnable bias vector. The attentional co-efficient 𝛼𝑘 (𝑢, 𝑣, 𝑡) is
then computed as a function of the user feature x𝑠,𝑘𝑢 and message
embedding m𝑘𝑢←𝑣 ∈ R𝐷 from friend 𝑣 to user 𝑢, defined by:

𝛼𝑘 (𝑢, 𝑣, 𝑡) = 𝜎
(
a𝑇
𝑘

(
𝑾𝑘

1 x
𝑠,𝑘
𝑢 | | m𝑘𝑢←𝑣

))
𝑠 = T (𝑡) (7)

where 𝜎 is a non-linearity such as LeakyRELU. We similarly
normalize the attentional coefficients 𝛼𝑘 (𝑢, 𝑣, 𝑡) using Equation 4
and compute the ego-network representation z𝑘𝑢 (𝑡, 𝑁𝑢 (𝑡)) for user
𝑢 on modality 𝑘 using Equation 5 with the message embedding
m𝑘𝑢←𝑣 from Equation 6 conditioned on the link features.

Distinct from conventional GNNs [17, 28, 43, 50] that only con-
sider user x𝑠,𝑘𝑢 and friend x𝑠,𝑘𝑣 features to parameterize the neighbor
aggregation, we additionally incorporate the link features e𝑠𝑢𝑣 into
the attentional co-efficient 𝛼𝑘 (𝑢, 𝑣, 𝑡) (Equation 7) and the message
m𝑘𝑢←𝑣 (Equation 6) passed from friend 𝑣 ; this encourages the aggre-
gation to be cognizant of pairwise communications with friends,
e.g., passing more messages from the active friendships. Empirically,
we observe a boost in friend ranking performance (Section 5.4) due
to our communication-aware message passing strategy.

Message Aggregation:We refine the representation of user 𝑢
by aggregating the messages propagated from friends in 𝑁𝑢 (𝑡). In
addition, we consider self-connections m𝑘𝑢←𝑢 = 𝑾𝑘

1 x
𝑠,𝑘
𝑢 to retain

knowledge of the original features (𝑾1 is the same transformation
used in Equation 3). Specifically, we concatenate the ego-network

and self-representations of user 𝑢, and further transform the con-
catenated embedding through a dense layer 𝐹𝑘

𝜃
, defined by:

z𝑘𝑢 (𝑡) = 𝐹𝑘
𝜃

(
m𝑘𝑢←𝑢 , z

𝑘
𝑢

(
𝑡, 𝑁𝑢 (𝑡)

))
(8)

= 𝜎

(
𝑾𝑘
𝑎

(
z𝑘𝑢 (𝑡, 𝑁𝑢 (𝑡)) | | m𝑘𝑢←𝑢

)
+ b𝑎

)
(9)

where 𝑾𝑘
𝑎 ∈ R𝐷×𝐷 , b𝑎 ∈ R𝐷 are trainable parameters of the

aggregator and 𝜎 denotes the ELU activation function which allows
messages to encode both positive and small negative signals. Empir-
ically, we observe significant improvements due to self-connections,
compared to directly using the propagated ego-network represen-
tation from the neighborhood, as in GCN [28], and GAT [43].

Higher-order Propagation:We stack multiple neighbor aggre-
gation layers to model high-order connectivity information, i.e.,
propagate features from 𝑙-hop neighbors. The inputs to layer 𝑙 de-
pend on the user representations output from layer (𝑙−1) where the
initial (i.e., “layer 0”) representations are set to the input user fea-
tures in modality 𝑘 . By stacking 𝑙 layers, we recursively formulate
the representation z𝑘

𝑢,𝑙
of user 𝑢 at the end of layer 𝑙 by:

z𝑘
𝑢,𝑙

= 𝐹𝑘
𝜃,𝑙

(
m𝑘
𝑢←𝑢,𝑙−1, 𝑧

𝑘
𝑢,𝑙−1

(
𝑡, 𝑁𝑢 (𝑡)

))
m𝑘
𝑢←𝑢,𝑙−1 = 𝑧

𝑘
𝑢,𝑙−1 (10)

where 𝑧𝑘
𝑢,𝑙−1 is the representation of user 𝑢 in modality 𝑘 after

(𝑙 − 1) layers and 𝑧𝑘
𝑢,𝑙−1 (𝑡, 𝑁𝑣 (𝑡)) denotes the (𝑙 − 1)-ego-network

representation of user 𝑢. We apply 𝐿 neighbor aggregation layers
to generate the layer-𝐿 representation z𝑘

𝑢,𝐿
of user 𝑢 in modality 𝑘 .

4.2.2 Cross Modality Attention. To learn complex non-linear
correlations between different feature modalities, we design a cross-
modality attention mechanism. Specifically, we learn modality at-
tention weights 𝛽𝑘𝑢 (𝑡) to distinguish the influence of each modality
𝑘 using a two-layer Multi-Layer Perceptron, defined by:

𝛽𝑘𝑢 (𝑡) =
exp

(
a𝑇𝑚 𝑾𝑚z𝑘

𝑢,𝐿
+ 𝑏𝑚

)∑𝐾
𝑘′=1 exp

(
a𝑇𝑚 𝑾𝑚z𝑘′

𝑢,𝐿
+ 𝑏𝑚

) (11)

Graph Neural Networks for Friend Ranking in Large-scale Social Platforms WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

with weights 𝑾𝑚 ∈ R𝐷×𝐷 , a𝑚 ∈ R𝐷 and scalar bias 𝑏𝑚 . The
final representation h𝑢 (𝑡) ∈ R𝐷 of user𝑢 is computed by aweighted
aggregation of the layer-𝐿 modality-specific user representations
{z1
𝑢,𝐿
, . . . , z𝐾

𝑢,𝐿
}, guided by modality weights 𝛽𝑘𝑢 (𝑡), defined by:

h𝑢 (𝑡) =
𝐾∑
𝑘=1

𝛽𝑘𝑢 (𝑡) 𝑾𝑚z𝑘
𝑢,𝑙

(12)

4.3 Temporal Model Training

We train GraFRank using a temporal pairwise ranking objective
to differentiate positive and negative neighborhoods. We assume
access to training data described by a set of timestamped links L
created in a window (𝑡𝑠 , 𝑡𝑒), where (𝑢, 𝑣, 𝑡) ∈ L is a bi-directional
friendship link between source user 𝑢 and target friend 𝑣 formed at
time 𝑡 ∈ (𝑡𝑠 , 𝑡𝑒). To train the parameters of GraFRank, we define a
triplet-like learning objective based on max-margin ranking.

4.3.1 Pairwise Ranking Objective. We define a time-sensitive
ranking loss over the final user embeddings (h𝑢 (𝑡) for user 𝑢 at
time 𝑡) to rank the inner product of positive links (𝑢, 𝑣, 𝑡) ∈ L,
higher than sampled negatives (𝑢, 𝑛, 𝑡) by a margin factor Δ, as:

𝐿 =
∑

(𝑢,𝑣,𝑡) ∈L
E𝑛∼𝑃𝑛 (𝑢) max{0, h𝑢 (𝑡) ·h𝑛 (𝑡)−h𝑢 (𝑡) ·h𝑣 (𝑡)+Δ} (13)

where Δ is a margin hyper-parameter and 𝑃𝑛 (𝑢) is the negative
sampling distribution for user 𝑢. Here, we use a single forward
pass to inductively compute a time-aware representation h𝑢 (𝑡) for
each user 𝑢 ∈ V at time 𝑡 based on the appropriate user and link
features in temporal neighborhoods. Each minibatch of training
examples is then optimized independently which precludes the need
to explicitly model temporal dependencies. This generic contrastive
learning formulation enables usage of the same framework for
different recommendation tasks such as candidate retrieval and
ranking, with different negative sampling distributions.

4.3.2 Candidate Retrieval and Ranking Tasks. We learn user
embeddings towards two key use-cases in friend ranking: candidate
retrieval and candidate ranking. Candidate retrieval aims to generate
a list of top-𝑁 (e.g., 𝑁 = 100) potential friend suggestions out of a
very large candidate pool (over millions of users), while candidate
ranking involves fine-grained re-ranking within a much smaller
pool of the generated candidates, to determine the top-𝑛 (e.g., 𝑛 =

10) suggestions shown to end users in the platform. We define
different negative sampling distributions 𝑃𝑛 (𝑢) for each task owing
to their different ranking granularities, as follows:
• Candidate Retrieval: For the coarse-grained task of candidate
retrieval, we uniformly sample five random negative users for
each positive link, from the entire user setV . Generating random
negatives is efficient and effective at quickly training the model
to identify potential friend candidates for each user. However,
random negatives are often too easy to distinguish and may not
provide the requisite resolution for themodel to learn fine-grained
distinctions necessary for candidate friend ranking.
• Candidate Ranking: To enhance model resolution for candidate
ranking, we also use hard negative examples; for each positive
pair (𝑢, 𝑣), we generate five hard negatives related to the source𝑢,

Dataset Region 1 Region 2

users 3.1 M 17.1 M
links 286 M 2.36 B
user features 79 79
link features 6 6
test set friend requests 46K 340K

Table 1: Dataset statistics

but not as relevant as the target friend 𝑣 . For a 2-layer GNN (𝐿 =

2), we randomly choose users in the 3-4 hop neighborhood of𝑢 as
hard negatives; 2-hop neighbors are excluded since such friends of
friends are expected to be relevant suggestion candidates owing
to triadic closure in social networks. In practice, we pre-compute
hard negative examples to facilitate efficient model training.
We adopt a two-phase learning approach for candidate ranking.
We pre-train the model on random negatives (as in candidate
retrieval), to identify good model initialization points, followed
by fine-tuning on hard negatives. Ranking hard negatives is more
challenging, hence encouraging the model to progressively learn
friend distinctions at a finer granularity. We empirically show
notable gains on candidate ranking due to our two-phase strategy,
compared to training individually on random or hard negatives.

4.3.3 Temporal Neighborhood Sampling. We learn a tempo-
ral user representation h𝑢 (𝑡) for user𝑢 at time 𝑡 by selecting a fixed
number of friends from 𝑁𝑢 (𝑡) for neighbor aggregation in each
layer; this controls the memory footprint during training [17].

To efficiently identify and sample neighbors of 𝑢 at any time 𝑡 ,
we represent the time-evolving friendship graph G as a temporal ad-
jacency list at its latest time 𝑡𝑠 where each user𝑢 has a list of (friend,
time) tuples sorted by link creation times. This data representation
enables 𝑂 (log𝑑) neighbor lookup at an arbitrary timestamp 𝑡 via
binary search where 𝑑 is the average user degree in the graph.

4.3.4 Multi-GPU Minibatch Training. We train GraFRank us-
ing minibatches of links from L over multiple GPUs on a single
shared memory machine. The temporal adjacency list of G and
feature matrices 𝑿 , 𝑬 are placed in shared CPU memory to enable
fast parallel neighborhood sampling and feature lookup. We adopt
a producer-consumer framework [50] that alternates between CPUs
and GPUs for model training. A CPU-bound producer constructs
friend neighborhoods, looks up user and link features, and gener-
ates negative samples for the links of a minibatch. We then partition
each minibatch across multiple GPUs, to compute forward passes
and gradients with a PyTorch model over dynamically constructed
computation graphs. The gradients from different GPUs are syn-
chronized using PyTorch’s Distributed Data Parallel [30] construct.

5 EXPERIMENTS

To analyze the quality of user representations learned byGraFRank,
we propose five research questions to guide our experiments:
(RQ

1
) Can GraFRank outperform feature-based models and state-
of-the-art GNNs on candidate retrieval and ranking tasks?

(RQ
2
) How does GraFRank compare to prior work under alterna-
tive metrics of reciprocated and communicated friendships?

(RQ
3
) How do the different architectural design choices and train-
ing strategies in GraFRank impact performance?

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Sankar et al.

Dataset Region 1 Region 2

Metric N@5 N@50 HR@5 HR@50 MRR N@5 N@50 HR@5 HR@50 MRR

LogReg 0.1752 0.2460 0.2452 0.5262 0.1751 0.0761 0.1367 0.1134 0.3654 0.0831
MLP 0.1923 0.2679 0.2721 0.5726 0.1903 0.0973 0.1720 0.1466 0.4541 0.1046
XGBoost 0.2099 0.2865 0.2932 0.5957 0.2071 0.1366 0.2097 0.1936 0.4921 0.1409
GCN 0.0934 0.1836 0.1490 0.5154 0.1034 0.1651 0.2634 0.2503 0.6427 0.1678
GAT 0.0851 0.1813 0.1424 0.5352 0.0960 0.1797 0.2794 0.2698 0.6663 0.1812
SAGE + Max 0.1790 0.2736 0.2695 0.6409 0.1797 0.1520 0.2505 0.2315 0.6269 0.1566
SAGE + Mean 0.2378 0.3240 0.3338 0.6757 0.2333 0.2870 0.3805 0.4005 0.7655 0.2790

GraFRank 0.3152 0.3983 0.4318 0.7533 0.3035 0.4166 0.4950 0.5386 0.8395 0.4012

Percentage Gains 32.55 % 22.93 % 29.36 % 11.48 % 30.09 % 45.16 % 30.09 % 34.48 % 9.67 % 43.8 %

Table 2: GraFRank outperforms feature-based models and GNNs (relative gains of 30-43 % MRR with respect to the best

baseline) on candidate retrieval in Regions 1 and 2. HR@K and N@K denote Hit-Rate@K and NDCG@Kmetrics for 𝐾 = 5, 50.

(RQ
4
) How do the training strategies and hyper-parameters impact
convergence and performance of GraFRank?

(RQ
5
) How do the learned user embeddings in GraFRank perform
across diverse user cohorts?

5.1 Experiment Setup

We now present our experimental setup with a brief description of
datasets, evaluation metrics, and model training details.

5.1.1 Datasets. We evaluate GraFRank on friend recommenda-
tions using two large-scale datasets from Snapchat (Table 1). Each
dataset is constructed from the interactions among users belonging
to a specific country (obscured for privacy reasons). We collect 79
user features spanning four modalities and six pairwise link fea-
tures, as described in Section 3.1. All features are standardized by
zero-mean and unit-variance normalization before model training.
In each dataset, the training set comprises timetamped friendships
created during a span of 7 contiguous days. Empirically, we find that
7 days suffices to achieve good results (comparable to 1 month), thus
significantly more efficient. To evaluate the quality of friendship
suggestions, the test set comprises all friend add requests over the
subsequent four days. We observe consistent results for different
train-test splits across 5 time periods and 2 geographic regions. We
use 10% of the labeled examples for hyper-parameter tuning.

5.1.2 Evaluation Metrics. We experiment on two friend sugges-
tion tasks: candidate retrieval and candidate ranking (Section 4.3).
To evaluate friend recommendation, we use ranking metrics Hit-
Rate (HR@K), NormalizedDiscounted Cumulative Gain (NDCG@K)
and Mean Reciprocal Rank (MRR). We adopt negative-sample eval-
uation [21] to generate 𝑁 negative samples per positive pair (𝑢, 𝑣)
in the test set (user 𝑢 has sent a friend request to user 𝑣). We then
evaluate metrics for each test pair (𝑢, 𝑣) by ranking 𝑣 among the 𝑁
negative samples via inner products in the latent space.

To evaluate candidate retrieval, we use 𝑁 = 10000 randomly sam-
pled negative users for each positive test pair, to emulate retrieval
from a large candidate pool. Ideally, candidate ranking should op-
erate over a shortlisted set of potential friends identified by the
retrieval system. However, we aim to provide a fair benchmark com-
parison of different models for candidate ranking that is agnostic to

the biases of the upstream retrieval system. Thus, we instead gen-
erate 𝑁 = 500 hard negatives samples per test pair based on 𝐾-hop
neighborhoods (Section 4.3), to ensure an unbiased comparison.

5.1.3 Training Details. We train GraFRank using 𝐿 = 2 mes-
sage passing layers per modality with a hidden dimension size of
64 and output embedding dimension 𝐷 = 32. In each layer, we
sample 15 first-order neighbors and 15 second-order neighbors for
each sampled first-order neighbor; each user receives messages
propagated from upto 225 friends. During model training, we apply
dropout with rate of 0.3 in both layers. The model is trained for
a maximum of 30 epochs with a batch size of 256 positive pairs
(apart from 5 random/hard negatives per pair) and learning rate of
0.001 using Adam optimizer. We benchmark our experiments using
a machine with 32 cores, 200 GB shared CPU memory, and a single
Nvidia Tesla P100 GPU on the Linux platform. Our PyTorch [30]
implementation of GraFRank is publicly available1.

5.2 Baselines

We compare GraFRank on friend ranking against strong feature-
based ranking models and state-of-the-art GNN models.
• LogReg [20]: Logistic regression classifier for link prediction.
The input feature for each pair of users, is a concatenation of
source and target features across the 𝐾 user feature modalities.
• XGBoost [7]: Tree boosting model for pairwise learning to rank,
trained using the same input features as LogReg. It is currently
deployed at Snapchat for quick-add friend suggestions.
• MLP [20]: Two-layerMulti-Layer Perceptronwith fully-connected
layers and ReLU activations to learn user representations. We
trainMLP using the same ranking loss as our model (Equation 13).
• GCN [28]: Scalable graph convolutional networks with degree-
weighted aggregation and neighborhood sampling. We concate-
nate user features across the 𝐾 modalities into a single vector.
• GAT [43]: Graph attention networks with self-attentional aggre-
gation and neighborhood sampling for scalable training.
• SAGE + Max [17]: Element-wise max pooling for neighbor ag-
gregation and self-embedding concatenation at each layer.

1https://github.com/aravindsankar28/GraFRank

Graph Neural Networks for Friend Ranking in Large-scale Social Platforms WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

Dataset Region 1 Region 2

Metric N@5 N@10 HR@5 HR@10 MRR N@5 N@10 HR@5 HR@10 MRR

LogReg 0.1521 0.1795 0.2268 0.3116 0.1523 0.1398 0.1711 0.2136 0.3106 0.1449
MLP 0.1873 0.2190 0.2663 0.3644 0.1915 0.1927 0.2241 0.2721 0.3695 0.1967
XGBoost 0.1714 0.2002 0.2394 0.3287 0.1779 0.1844 0.2174 0.2605 0.363 0.1911
GCN 0.1345 0.1698 0.2039 0.3136 0.1462 0.1758 0.2147 0.2619 0.3826 0.1831
GAT 0.1416 0.1776 0.2197 0.3313 0.1503 0.2028 0.2445 0.2984 0.4276 0.2077
SAGE + Max 0.2063 0.2441 0.2980 0.4151 0.2094 0.2426 0.2818 0.3443 0.4654 0.2426
SAGE + Mean 0.2232 0.2607 0.3165 0.4330 0.2255 0.2766 0.3164 0.3835 0.5064 0.2744

GraFRank 0.2684 0.3098 0.3772 0.5051 0.2669 0.3342 0.3767 0.4529 0.5841 0.3282

Percentage Gains 20.25 % 18.83 % 19.18 % 16.65 % 18.36 % 20.82 % 19.06 % 18.1 % 15.34 % 19.61 %

Table 3: GraFRank achieves significant improvements (relative gains of 18-20% MRR with respect to the best baseline) over

both feature-based models and prior GNNs in all ranking metrics on friend candidate ranking in both Region 1 and Region 2.

• SAGE + Mean [17]: Same as SAGE + Max with element-wise
mean pooling function for neighbor aggregation.
Note that neural graph autoencoders [27] and graph convolu-

tional matrix completion models [5] are not comparable because
they cannot scale to our large-scale social network datasets.

We train all baseline GNNs in a time-sensitive manner following
the same training strategy as GraFRank with time-aware neigh-
borhood sampling and feature lookups, to compute temporal user
representations. For each baseline, we train separate models for
retrieval and ranking tasks; we use random negatives for retrieval
while resorting to hard negatives for ranking; empirically, training
separate models is vastly superior to training a single model us-
ing a mixture of random and hard negatives, or even a curriculum
training scheme [50]. Our experimental results are averaged over 5
independent runs with random initializations for all methods.

5.3 Experimental Results

We first present our main results comparing GraFRank with com-
peting baselines on candidate retrieval and ranking tasks, followed
by comparisons using alternative measures of friendship quality.

5.3.1 Friend Candidate Retrieval and Ranking (RQ1). We
compare friend recommendation performance (based on add re-
quests) of various approaches on retrieval and ranking in Tables 2
and 3 respectively. Interestingly, we find that SAGE variants outper-
form popular GNNmodels GCN and GAT. A possible explanation is
the impact of feature space heterogeneity in social networks and sto-
chastic neighbor sampling; this results in noisy user representations
for GNN models (GCN, GAT) that recursively aggregate neighbor
features without emphasizing self-connections. Preserving knowl-
edge of the original features by concatenating the self-embedding
in each layer results in noticeable gains (SAGE variants).

GraFRank significantly outperforms state-of-the-art approaches
with over 20-30% relative MRR gains. The performance gains of
GraFRank over the best baseline are statistically significant with
𝑝 < 0.01 judged by the paired t-test. In contrast to singular aggre-
gation over the entire feature space by prior GNNs, GraFRank
handles variance in homophily across different modalities through
modality-specific communication-aware neighbor aggregation. Fur-
ther, the final user representations are learnt by a correlation-aware
attention layer to capture discriminative facets of each modality.

5.3.2 Alternative FriendshipQuality Indicators (RQ2). In ad-
dition to evaluating friend suggestion based on friend addition re-
quests, we consider other metrics to quantify friendship quality,
e.g., social platforms often incentivize friendships that result in
greater downstream engagement. We therefore define friendship
reciprocation and future bi-directional communication as two alter-
native measures of friendship quality. We evaluate reciprocated and
communicated friend suggestion results on retrieval in Table 4.

We observe consistently high gains for GraFRank on the recip-
rocated and communicated friend retrieval tasks; this also demon-
strates the generality of our pairwise friend ranking objective (Equa-
tion 13) in learning user representations that promote downstream
engagement. Designing multi-criteria ranking objectives to balance
different quality measures is worth exploring in the future.

Dataset Add Reciprocate Communicate

Metric HR@50 MRR HR@50 MRR HR@50 MRR

LogReg 0.5262 0.1751 0.5582 0.2029 0.5495 0.1811
MLP 0.5726 0.1903 0.6006 0.2165 0.6001 0.1979
XGBoost 0.5957 0.2071 0.6286 0.2322 0.6407 0.2274
GCN 0.5154 0.1034 0.5329 0.1113 0.5273 0.1038
GAT 0.5352 0.0960 0.5596 0.1045 0.5654 0.0971
SAGE + Max 0.6409 0.1797 0.6653 0.2043 0.6670 0.1834
SAGE + Mean 0.6757 0.2333 0.6984 0.2609 0.7056 0.2446

GraFrank 0.7533 0.3035 0.7756 0.3367 0.7942 0.3152

Percent Gains 11.48 % 30.09% 11.05% 29.05% 12.56% 28.86 %

Table 4: Comparison of all models on add, reciprocate and

communicate friendship retrieval tasks (reported onRegion

1). GraFRank has consistent gains across all tasks.

5.4 Ablation Study (RQ3)

In this section, we present an ablation study to analyze the archi-
tectural modeling choices and training strategies in GraFRank.

5.4.1 Model Architecture. We design three variants to study the
utilities of communication-aware and modality-specific aggregation.
• GraFRank𝑈𝑀 (User-Modality): We analyze the contribution
of link features by parameterizing the 𝑘-th modality aggregator
with just the 𝑘-th modality user features (Equation 3). Note that
link features are excluded during neighbor aggregation.

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Sankar et al.

Dataset Retrieval Ranking

Metric HR@50 MRR HR@10 MRR

(a) GraFRank𝑈 0.6968 0.2346 0.4255 0.2164
(b) GraFRank𝑈𝐿 0.7069 0.2423 0.4450 0.2301
(c) GraFRank𝑈𝑀 0.7239 0.2823 0.4887 0.2480
GraFRank 0.7533 0.3035 0.5051 0.2669

Table 5: Model architecture ablation study of GraFRank.

Removing (c) link communication features, (b) modality-

specific aggregation, or (a) both, hurt model performance.

• GraFRank𝑈𝐿 (User-Link): To study the effectiveness of learn-
ing modality-specific aggregators, we define a single modality-
agnostic aggregator over user feature vectors obtained by con-
catenation across the 𝐾 modalities and link features.
• GraFRank𝑈 (User): We remove link features from the aggre-
gator in GraFRank𝑈𝐿 to further test the standalone benefits of
link features in parameterizing a single neighbor aggregator.
The performance of all architectural variations are reported

in Table 5. GraFRank𝑈𝐿 performs much worse than GraFRank
highlighting the benefits of learning multiple modality-specific
aggregators to account for varying extents of modality homophily.

Communication-aware neighbor aggregation is effective at iden-
tifying actively engaged friends during neighbor aggregation; this is
evidenced by the gains of GraFRank over GraFRank𝑈𝑀 (modality-
aware user feature aggregation). We find noticeable gains from pa-
rameterizing the aggregator with link features, even in the absence
of modality-specific aggregation, from the comparison between
GraFRank𝑈𝐿 and GraFRank𝑈 (single user feature aggregator).

5.4.2 Training Strategy. We examine different training strate-
gies to learn GNN models for friend recommendation. We train
GraFRankwith random negatives for candidate retrieval, but adopt
two-phase hard negative fine-tuning (with random negative pre-
training) for candidate ranking. To validate our choices, we examine
three model training settings: (a) random negative training, (b) hard
negative training, and (c) fine-tuning (after pretraining on random
negatives), for two GNN models: SAGE + Mean and GraFRank,
across both candidate retrieval and ranking tasks. Note that train-
ing with combination of random and hard negatives, as proposed
in [50], is excluded since it consistently performs worse than the
above three strategies on both retrieval and ranking tasks.

Dataset Retrieval Ranking

Metric HR@50 MRR HR@10 MRR

SAGE + Mean (random) 0.6757 0.2333 0.3943 0.1923
SAGE + Mean (hard) 0.3275 0.0766 0.4330 0.2255
SAGE +Mean (fine-tune) 0.3978 0.0965 0.4561 0.2372

GraFRank (random) 0.7533 0.3035 0.4655 0.2254
GraFRank (hard) 0.4542 0.1461 0.4823 0.2594
GraFRank (fine-tune) 0.5283 0.1871 0.5051 0.2669

Table 6: Training strategy comparison of two GNNs across

retrieval and ranking tasks. Random negative training

achieves best results for retrieval. Random negative pre-

training with hard negative fine-tuning benefits ranking.

We make three consistent observations from the performance
comparison (Table 6) across all of the compared GNN models:
• Random negative training achieves best results for retrieval, but
performs poorly on ranking; such models lack the resolution to
discriminate amongst potential candidates for re-ranking.
• Training on hard negatives improves candidate ranking as ex-
pected, yet results in poor retrieval performance. Learning fine
profile-oriented distinctions among graph-based neighbors is
actually detrimental to the coarse-grained task of retrieval.
• Random negative pretraining yields good parameter initialization
points that are more conducive for effective fine-tuning on hard
negatives. Fine-tuning improves results for all GNNs over direct
hard negative training on ranking, but is ineffective for retrieval.

5.5 Training and Sensitivity Analysis (RQ4)

In this section, we quantitatively analyze model convergence and
model sensitivity to sampled neighborhood sizes in GNN models.

5.5.1 Model Training Analysis. We investigate the relative abil-
ities of different models to optimize the pairwise friend ranking
objective (Equation 13). We compare the convergence rates of base-
lines MLP, SAGE + Mean, and our model GraFRank under both
random and hard negative training settings, by examining the av-
erage training loss per epoch in Figures 6 (a) and (b) respectively.

0 5 10 15 20 25 30
Training Epoch

0.02

0.04

0.06

0.08

0.10

0.12

P
ai

rw
is

e
R

an
ki

ng
 L

os
s

Random Negative Training

MLP
SAGE + Mean
GraFRank

0 5 10 15 20 25 30
Training Epoch

0.02

0.04

0.06

0.08

0.10

0.12

P
ai

rw
is

e
R

an
ki

ng
 L

os
s

Hard Negative Training

MLP
SAGE + Mean
GraFRank

Figure 6: GraFRank converges faster to better optimization

minima in random and hard negative settings, which trans-

lates to notable gains on both retrieval and ranking tasks.

As expected, all models converge to a lower training loss against
random negatives (Figure 6 (a)) when compared to hard negatives
(Figure 6 (b)). Interestingly, SAGE + Mean shows similar training
convergence as MLP in Figure 6 (b), but achieves better test results;
this indicates better generalization for GNNs over feature-based
models. Compared to baselines, GraFRank converges to a better op-
timization minimum under both random and hard negative settings,
which also generalizes to better test results (Tables 2 and 3).

5.5.2 Runtime andSensitivityAnalysis. Akey trade-off in train-
ing scalable GNN models lies in choosing the size of sampled neigh-
borhoods 𝑇 in each message-passing layer. In our experiments, we
train two-layer GNN models for friend ranking. Figure 8 shows
the runtime and performance of SAGE + Mean and GraFRank for
different sizes of sampled neighborhoods 𝑇 from 5 to 20.

Model training time generally increases linearly with 𝑇 , but
has a greater slope after 𝑇 = 15. We also observe diminishing
returns in model performance (MRR) with increase in the size of
sampled neighborhood 𝑇 after 𝑇 = 15. Thus, we select a two-layer
GNN model with layer-wise neighborhood size of 15, to provide an
effective trade-off between computational cost and performance.

Graph Neural Networks for Friend Ranking in Large-scale Social Platforms WWW ’21, April 19–23, 2021, Ljubljana, Slovenia

MLP SAGE + Mean GRaFRank

Figure 7: Visualization of two-dimensional t-SNE transformed user representations from feature-basedMLP, and GNNmodels:

SAGE + Mean, and GraFRank. Users with the same color belong to the same city. Compared to MLP and SAGE + Mean, the

friendship relationships learnt by GraFRank result in well-separated user clusters capturing geographical proximity.

Compared to SAGE + Mean, GraFRank has marginally higher
training times, yet achieves significant performance gains (20%
MRR), justifying the added cost of modality-specific aggregation.

5 10 15 20
Sampled neighbors per layer

0

500

1000

1500

2000

2500

3000

3500

Ti
m

e
pe

r E
po

ch
 (S

ec
on

ds
)

SAGE + Mean
GRaFRank

5 10 15 20
Sampled neighbors per layer

0.20

0.22

0.24

0.26

0.28

0.30

0.32

M
R

R

SAGE + Mean
GRaFRank

Figure 8: We observe diminishing returns in MRR after

neighborhood size 𝑇 = 15; GraFRank has significant gains

over SAGE + Mean, with marginally higher training times.

5.6 User Cohort Analysis (RQ5)

In this section, we present multiple qualitative analyses to examine
model performance across user segments with varied node degree
and friending activity levels, and compare t-SNE visualizations of
user representations learned by different neural models.

5.6.1 Impact of degree and activity. We examine friend recom-
mendation performance across users with different node degrees
and friending activities. Specifically, for each test user, degree is the
number of friends, and activity is the number of friend requests
sent/received in the past 30 days. We divide the test users into
groups independently based on their degree and activity levels.
We compare GraFRank with feature-based models MLP, XGBoost,
and the best GNN baseline SAGE + Mean. Figures 9(a) and (b) de-
pict friend candidate retrieval performance HR@50 across user
segments with different degrees and activities respectively.

From Figure 9(a), overall model performance generally increases
with node degree due to the availability of more structural infor-
mation. GraFRank has significant improvements across all user
segments, with notably higher gains for low-to-medium degree users
(relative gains of 20%). GraFRank prioritizes active friendships by
communication-aware message-passing, which compensates for
the lack of sufficient local connectivities in the ego-network.

The performance variation across users with different activity
levels in Figure 9(b), exhibits more distinctive trends with clear
gains for GNNmodels over feature-basedMLP and XGBoost for less-
active users. Significantly, GraFRank has much stronger gains over
SAGE +Mean, in less-active user segments, owing to itsmulti-faceted
modeling of heterogeneous in-platform user actions. GraFRank ef-
fectively overcomes sparsity concerns for less-active users, through
modality-specific neighbor aggregation over multi-modal user fea-
tures to learn expressive user representations for friend ranking.

0 1 2 3 4 5 6 7 8 9
User groups ordered by increasing node degree

0.2

0.3

0.4

0.5

0.6

0.7

0.8

H
it

R
at

e
@

 5
0

MLP
XGBoost
SAGE + MEAN
GraFRank

0 1 2 3 4 5 6 7 8 9
User groups ordered by increasing friending activity

0.4

0.5

0.6

0.7

0.8

0.9

1.0

H
it

R
at

e
@

 5
0

MLP
XGBoost
SAGE + MEAN
GraFRank

Figure 9: GraFRankhas significant improvements across all

user segments, with notably larger gains for low-to-medium
degree users (a), and less-active users (b).

5.6.2 Visualization. To analyze the versatility of learned user em-
beddings, we present a qualitative visualization to compare different
models on their expressivity to capture geographical user proxim-
ity. We randomly select users from three different cities within
Region 1 and use t-SNE [32] to transform their learned embeddings
into two-dimensional vectors. Figure 7 compares the visualization
results from different neural models. Evidently, the visualization
learned by MLP does not capture geographical proximity, while
the GNN models are capable of grouping users located within the
same city. Compared to SAGE + Mean, GraFRank forms even more
well-segmented groups with minimal inter-cluster overlap.

6 CONCLUSION

This paper investigates graph neural network design for friend
suggestion in large-scale social platforms. We formulate friend sug-
gestion as multi-faceted friend ranking with multi-modal user fea-
tures and link communication features. Motivated by our empirical

WWW ’21, April 19–23, 2021, Ljubljana, Slovenia Sankar et al.

insights on user feature modalities, we design a neural architec-
ture GraFRank that handles heterogeneity in modality homophily
via modality-specific neighbor aggregators, and learns non-linear
modality correlations through cross-modality attention. Our exper-
iments on two multi-million user datasets from Snapchat reveal
significant improvements in friend candidate retrieval (30% MRR
gains) and ranking (20% MRR gains), with stronger gains for the
crucial population of less-active and low-degree users. Although
our case studies are conducted on a single platform Snapchat, we
expect GraFRank to be directly applicable to popular bidirectional
friending platforms (e.g., Facebook, LinkedIn) with minor adapta-
tions for unidirectional scenarios (e.g., Twitter, Instagram).

REFERENCES

[1] Lada A Adamic and Eytan Adar. 2003. Friends and neighbors on the web. Social
networks 25, 3 (2003), 211–230.

[2] Luca Maria Aiello, Alain Barrat, Rossano Schifanella, Ciro Cattuto, Benjamin
Markines, and Filippo Menczer. 2012. Friendship prediction and homophily in
social media. ACM Transactions on the Web (TWEB) 6, 2 (2012), 1–33.

[3] Réka Albert and Albert-László Barabási. 2002. Statistical mechanics of complex
networks. Reviews of modern physics 74, 1 (2002), 47.

[4] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. 2009. A com-
parison of extrinsic clustering evaluation metrics based on formal constraints.
Information retrieval 12, 4 (2009), 461–486.

[5] Rianne van den Berg, Thomas N Kipf, and Max Welling. 2017. Graph convolu-
tional matrix completion. arXiv preprint arXiv:1706.02263 (2017).

[6] Jianfei Chen, Jun Zhu, and Le Song. 2018. Stochastic Training of Graph Convolu-
tional Networks with Variance Reduction. In ICML. 942–950.

[7] Tianqi Chen and Carlos Guestrin. 2016. Xgboost: A scalable tree boosting system.
In KDD. ACM, 785–794.

[8] Zhengdao Chen, Lisha Li, and Joan Bruna. 2019. Supervised Community Detec-
tion with Line Graph Neural Networks. In ICLR. OpenReview.net.

[9] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-GCN: An efficient algorithm for training deep and large graph
convolutional networks. In KDD. ACM, 257–266.

[10] Paul Covington, Jay Adams, and Emre Sargin. 2016. Deep neural networks for
youtube recommendations. In RecSys. 191–198.

[11] Peng Cui, Xiao Wang, Jian Pei, and Wenwu Zhu. 2018. A survey on network
embedding. IEEE TKDE 31, 5 (2018), 833–852.

[12] Daizong Ding, Mi Zhang, Shao-Yuan Li, Jie Tang, Xiaotie Chen, and Zhi-Hua
Zhou. 2017. Baydnn: Friend recommendation with bayesian personalized ranking
deep neural network. In CIKM. 1479–1488.

[13] Wenqi Fan, Yao Ma, Qing Li, Yuan He, Eric Zhao, Jiliang Tang, and Dawei Yin.
2019. Graph neural networks for social recommendation. In The World Wide Web
Conference. 417–426.

[14] Golnoosh Farnadi, Jie Tang, Martine De Cock, and Marie-Francine Moens. 2018.
User profiling through deep multimodal fusion. In WSDM. 171–179.

[15] Xu Geng, Xiyu Wu, Lingyu Zhang, Qiang Yang, Yan Liu, and Jieping Ye. 2019.
Multi-modal graph interaction for multi-graph convolution network in urban
spatiotemporal forecasting. arXiv preprint arXiv:1905.11395 (2019).

[16] Aditya Grover and Jure Leskovec. 2016. node2vec: Scalable feature learning for
networks. In KDD. ACM, 855–864.

[17] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. In NIPS. 1024–1034.

[18] William L Hamilton, Rex Ying, and Jure Leskovec. 2017. Representation learning
on graphs: Methods and applications. arXiv preprint arXiv:1709.05584 (2017).

[19] John A Hartigan and Manchek A Wong. 1979. Algorithm AS 136: A k-means
clustering algorithm. Journal of the royal statistical society. 28, 1 (1979), 100–108.

[20] Trevor Hastie, Robert Tibshirani, and Jerome Friedman. 2009. The elements of
statistical learning: data mining, inference, and prediction. Springer Science &
Business Media.

[21] Xiangnan He, Lizi Liao, Hanwang Zhang, Liqiang Nie, Xia Hu, and Tat-Seng
Chua. 2017. Neural collaborative filtering. In WWW. 173–182.

[22] Jonathan L Herlocker, Joseph A Konstan, Loren G Terveen, and John T Riedl.
2004. Evaluating collaborative filtering recommender systems. ACM TOIS 22, 1
(2004), 5–53.

[23] Wenbing Huang, Tong Zhang, Yu Rong, and Junzhou Huang. 2018. Adaptive
sampling towards fast graph representation learning. In Advances in neural
information processing systems. 4558–4567.

[24] Ankit Jain, Isaac Liu, Ankur Sarda, , and Piero Molino. 2019. Food Discovery
with Uber Eats: Recommending for the Marketplace. (2019). https://eng.uber.
com/uber-eats-graph-learning/

[25] Zhiwei Jin, Juan Cao, HanGuo, Yongdong Zhang, and Jiebo Luo. 2017. Multimodal
fusion with recurrent neural networks for rumor detection on microblogs. In
MM. 795–816.

[26] Leo Katz. 1953. A new status index derived from sociometric analysis. Psychome-
trika 18, 1 (1953), 39–43.

[27] Thomas N Kipf and Max Welling. 2016. Variational Graph Auto-Encoders. NIPS
Workshop on Bayesian Deep Learning (2016).

[28] Thomas N Kipf and MaxWelling. 2017. Semi-supervised classification with graph
convolutional networks. In ICLR.

[29] Adit Krishnan, Hari Cheruvu, Cheng Tao, and Hari Sundaram. 2019. A Modular
Adversarial Approach to Social Recommendation. In CIKM. ACM, 1753–1762.

[30] Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li,
Adam Paszke, Jeff Smith, Brian Vaughan, Pritam Damania, et al. 2020. Pytorch
distributed: Experiences on accelerating data parallel training. arXiv preprint
arXiv:2006.15704 (2020).

[31] David Liben-Nowell and Jon Kleinberg. 2007. The link-prediction problem for
social networks. JASIST 58, 7 (2007), 1019–1031.

[32] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing data using t-SNE.
Journal of machine learning research 9, Nov (2008), 2579–2605.

[33] Miller McPherson, Lynn Smith-Lovin, and James M Cook. 2001. Birds of a feather:
Homophily in social networks. Annual review of sociology 27, 1 (2001), 415–444.

[34] Joshua O’Madadhain, Jon Hutchins, and Padhraic Smyth. 2005. Prediction and
ranking algorithms for event-based network data. ACM SIGKDD explorations
newsletter 7, 2 (2005), 23–30.

[35] Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. 2014. Deepwalk: Online learning
of social representations. In KDD. ACM, 701–710.

[36] Aravind Sankar, Junting Wang, Adit Krishnan, and Hari Sundaram. 2020. Be-
yond Localized Graph Neural Networks: An Attributed Motif Regularization
Framework. In ICDM.

[37] Aravind Sankar, Yanhong Wu, Liang Gou, Wei Zhang, and Hao Yang. 2020.
Dysat: Deep neural representation learning on dynamic graphs via self-attention
networks. InWSDM. 519–527.

[38] Aravind Sankar, Yanhong Wu, Yuhang Wu, Wei Zhang, Hao Yang, and Hari
Sundaram. 2020. GroupIM: A Mutual Information Maximization Framework for
Neural Group Recommendation. In SIGIR. 1279–1288.

[39] Aravind Sankar, Xinyang Zhang, Adit Krishnan, and Jiawei Han. 2020. Inf-VAE:
A Variational Autoencoder Framework to Integrate Homophily and Influence in
Diffusion Prediction. In WSDM. 510–518.

[40] Neil Shah, Danai Koutra, Tianmin Zou, Brian Gallagher, and Christos Faloutsos.
2015. Timecrunch: Interpretable dynamic graph summarization. In KDD. ACM.

[41] Sucheta Soundarajan, Acar Tamersoy, Elias B Khalil, Tina Eliassi-Rad,
Duen Horng Chau, Brian Gallagher, and Kevin Roundy. 2016. Generating graph
snapshots from streaming edge data. In WWW. 109–110.

[42] Xianfeng Tang, Yozen Liu, Neil Shah, Xiaolin Shi, Prasenjit Mitra, and Suhang
Wang. 2020. Knowing your FATE: Friendship, Action and Temporal Explanations
for User Engagement Prediction on Social Apps. In KDD. ACM, 2269–2279.

[43] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Liò, and Yoshua Bengio. 2018. Graph Attention Networks. ICLR (2018).

[44] Jizhe Wang, Pipei Huang, Huan Zhao, Zhibo Zhang, Binqiang Zhao, and Dik Lun
Lee. 2018. Billion-scale commodity embedding for e-commerce recommendation
in alibaba. In KDD. ACM, 839–848.

[45] Menghan Wang, Yujie Lin, Guli Lin, Keping Yang, and Xiao-Ming Wu. 2020.
M2GRL: A Multi-task Multi-view Graph Representation Learning Framework
for Web-scale Recommender Systems. In KDD. ACM, 2349–2358.

[46] YinweiWei, XiangWang, Liqiang Nie, Xiangnan He, Richang Hong, and Tat-Seng
Chua. 2019. MMGCN: Multi-modal graph convolution network for personalized
recommendation of micro-video. In MM. 1437–1445.

[47] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
TNNLS (2020).

[48] Yuxin Xiao, Adit Krishnan, and Hari Sundaram. 2020. Discovering strategic
behaviors for collaborative content-production in social networks. In WWW.
2078–2088.

[49] Carl Yang, Aditya Pal, Andrew Zhai, Nikil Pancha, Jiawei Han, Charles Rosenberg,
and Jure Leskovec. 2020. MultiSage: Empowering GCNwith ContextualizedMulti-
Embeddings on Web-Scale Multipartite Networks. In KDD. ACM, 2434–2443.

[50] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L Hamilton,
and Jure Leskovec. 2018. Graph convolutional neural networks for web-scale
recommender systems. In KDD. ACM, 974–983.

[51] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Vik-
tor K. Prasanna. 2020. GraphSAINT: Graph Sampling Based Inductive Learning
Method. In ICLR. OpenReview.net.

[52] Muhan Zhang and Yixin Chen. 2017. Weisfeiler-lehman neural machine for link
prediction. In KDD. ACM, 575–583.

[53] Muhan Zhang and Yixin Chen. 2018. Link prediction based on graph neural
networks. In Advances in Neural Information Processing Systems. 5165–5175.

[54] Muhan Zhang and Yixin Chen. 2020. Inductive Matrix Completion Based on
Graph Neural Networks. In ICLR. OpenReview.net.

https://eng.uber.com/uber-eats-graph-learning/
https://eng.uber.com/uber-eats-graph-learning/

	Abstract
	1 Introduction
	2 Related Work
	3 Preliminaries
	3.1 Problem Formulation
	3.2 Background on GNNs

	4 Graph Neural Friend Ranking
	4.1 Motivating Insight: Modality Analysis
	4.2 GraFRank: Multi-Faceted Friend Ranking
	4.3 Temporal Model Training

	5 Experiments
	5.1 Experiment Setup
	5.2 Baselines
	5.3 Experimental Results
	5.4 Ablation Study (RQ3)
	5.5 Training and Sensitivity Analysis (RQ4)
	5.6 User Cohort Analysis (RQ5)

	6 Conclusion
	References

