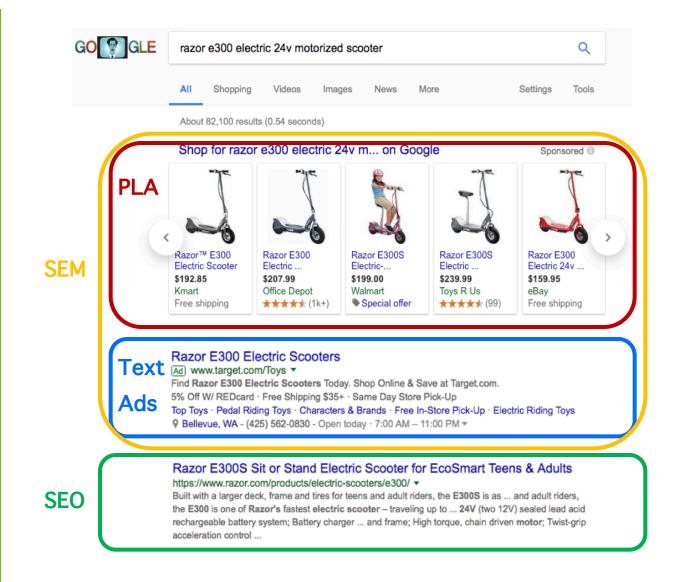


Bidding Strategy in Google Product Listing Ads

Jun Yu

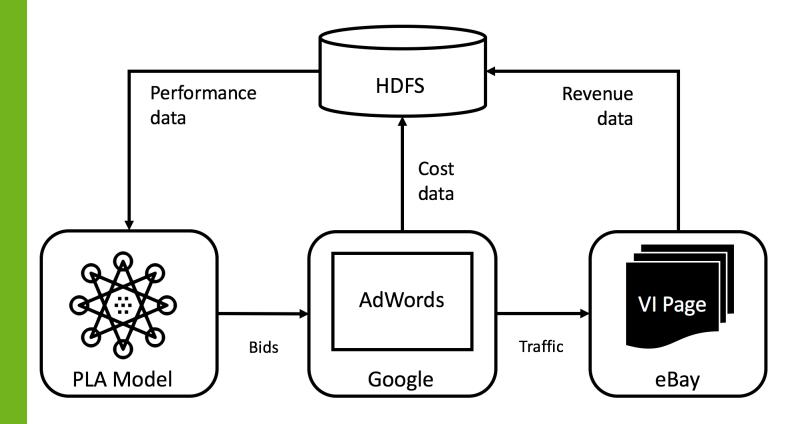
The Data Science Conference 2017

Google Product Listing Ads (PLA)

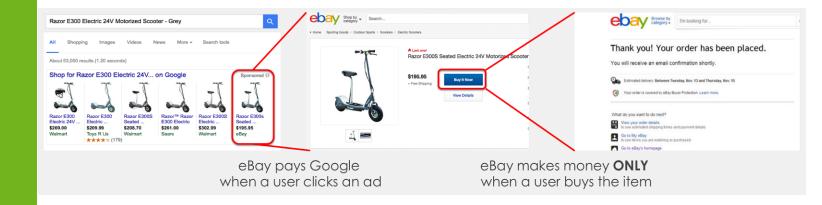


ebay

PLA Workflow



Problem Statement



Given a fixed budget, what bid value should be placed on each item so that the total incremental GMB is maximized?

- Over-bidding leads to higher advertising costs => loss of profit
- Under-bidding leads to poor or no ad position => loss of revenue

- * iGMB: incremental GMB = direct GMB + CAV (Customer Acquisition Value)
- * NoRBs: New or Reactivated Buyers

Challenge: Data Sparsity



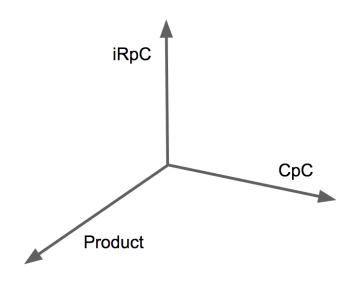
Limited Historical Data

Short Life Cycle

Semi-Structured Data

Grouping Model: Item Segmentation

Cluster similar items into Item Group (IG)

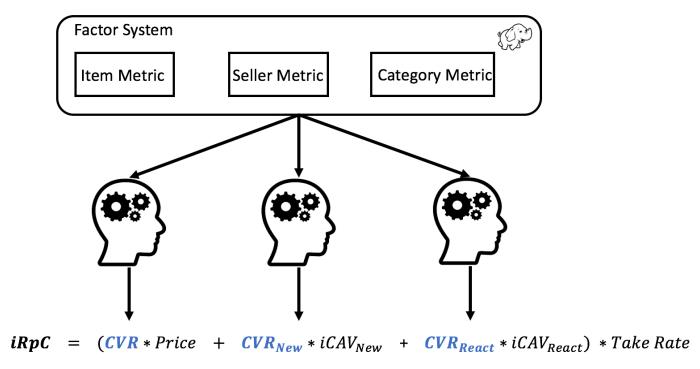


Fisher-Jenks Algorithm:

- Reduce the variance within classes
- Maximize the variance between classes

Grouping Model: iRpC Estimation

Estimate Incremental Revenue per Click (iRpC)

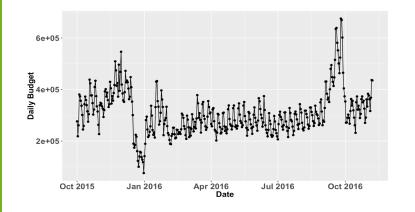


^{*} We train Gradient Boosted Trees (XGBoost) on 100M clicks and use Platt scaling to calibrate the predicted item conversion rate, segmented by vertical and price bucket.

Challenge: Dynamic Environment

Competition

Change in Demand



Budget Management

Generalized Second Price (GSP) Auction

Search Engine runs GSP to sell ad slots to advertisers

- Advertisers submit bids for their ads.
- Search Engine scores and ranks all the ads based on item score.
- Top K ads win the corresponding K slots in SRP.
- Each winning ad pays the minimum amount to secure its slot.

Advertiser	Quality (CTR X Rel)	Bid	Item Score (Quality X Bid)	Rank	Pay
Target	0.05	\$1.0	0.05	3	\$0.0
Walmart	1.0	\$2.0	2.0	1	\$1.6
еВау	0.1	\$1.5	0.15	2	\$1.1
Kmart	0.1	\$0.3	0.03	4	\$0.0

Truthful Bidding

Truthful bidding: bid one's true valuation per click.

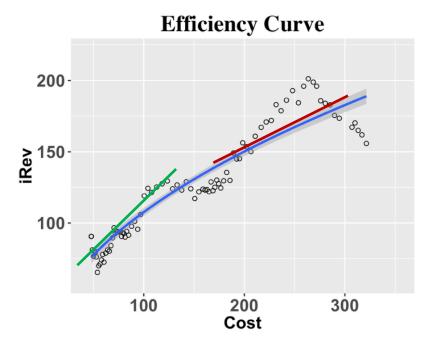
Truthful bidding is suboptimal in repeated GSP auctions.

	еВау	Walmart	Target	Ad Slot	CTR	Pay	Profit	Utility
True Valuation	¢70	¢60	¢10					
Strategy A (Truthful)	¢70	¢60	¢10	1st	0.05	¢61	¢9	0.45
Strategy B (Non-Truthful)	¢50	¢60	¢10	2nd	0.02	¢11	¢59	1.18

Efficiency Curve

Efficiency Curve (EC):

A graph plotting the iRev (R) as a function of the Cost (C).



Marginal ROI (mROI): the gradient of a given point on the EC, indicating the amount of revenue per extra dollar spent.

Bidding Model

Idea: Invest the additional dollar on the Item Group where the marginal ROI is the highest.

Estimate the efficiency curve for each Item Group.

$$R_i = f_i(C_i)$$

Allocate budget to each item groups with the following optimization.

$$\max_{C_i} \sum_{i=1}^{M} R_i \quad S.T. \quad \left| \sum_{i=1}^{M} C_i - Budget \right| \leq \epsilon$$