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Abstract

Although citizen science projects such as eBird can compile large volumes of
data over a broad spatial and temporal extent, the quality of this data can be a
concern due to differences in the skills of volunteers at identifying bird species.
Species accumulation curves, which plot the number of unique species observed
over time, are an effective way to quantify the skill level of an eBird participant.
Intuitively, the more skilled observers can identify more species per unit time than
inexperienced birders, resulting in a steeper curve. We propose a mixture model
for clustering species accumulation curves. With these clusters, we can identify
distinct skill levels of eBird participants, which can be used to classify birders into
skill categories and to develop automated data filters to improve data quality.

1 Introduction

Citizen science is a paradigm in which volunteers from the general public collect scientifically-
relevant data. This paradigm is especially useful when the scope of the data collection is too
broad to be performed only by trained scientists. Our work is in the context of the eBird project
(www.eBird.org) [8, 5], which relies on a global network of citizen scientists to record checklists
of bird observations, identified by species, through a protocol-driven process. These checklists are
submitted via the web and compiled by the Cornell Lab of Ornithology, forming one of the largest
biodiversity datasets in existence, with over 140 million observations reported by 150,000 birders
worldwide. This data plays an important role in ecological research [4] and conservation [7].

With such a large volume of data submitted by volunteers, data quality is an ongoing concern. The
current eBird system employs a regional filter based on expected occurrences of each species at
specific times of the year. This filter flags anomalous observations and any flagged records are
reviewed by a large network of volunteer reviewers. Observations are discarded if they do not pass
the review stage; otherwise the data is accepted to the database.

A major factor influencing data quality is the variation in observer skill at identifying bird species.
An observer’s skill level can be characterized by a species accumulation curve (SAC) [3], which
plots the number of unique species observed over time. SACs are typically used in the ecological
literature to quantify species richness [1] but they are also effective at modeling an observer’s skill
level. Intuitively, skilled birders rely on both sound and sight to identify bird species and thus are
able to identify more species per unit time than inexperienced birders, resulting in a steeper SAC.

Our goal is to identify distinct groups of eBird participants that are at similar skill levels. To accom-
plish this, we develop a mixture model to cluster the SACs of eBird participants. These clusters can
be used to classify birders into different skill levels, which can then be used to develop automated
data quality filters [9] and to track how the skills of individual birders evolve over time. We apply
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our clustering algorithm to eBird data in 2012 and show that the skill levels corresponding to the
resulting clusters are meaningful.

2 The mixture of Species Accumulation Curves model

In the mixture of SACs model, we assume that there is a fixed number K of distinct groups of
observers and that observers in the same group are at similar skill levels. As eBird is our application
domain, we use observer and birder interchangeably. Figure 1 shows a plate diagram of the mixture
of SACs model. The plate on the left represents K groups where group k is parameterized with βk.
The outer plate on the right represents M birders. The variable Zi ∈ {1, · · · ,K} denotes the group
membership of birder i. The inner plate represents Ni checklists submitted by birder i. The variable
Xij represents the amount of effort (e.g. duration) and Yij specifies the number of unique species
reported on checklist j of birder i. Finally, letXij denote the variable Xij with the intercept term.

The observation variable Yij depends on the effort Xij and the skill level of birder i, indicated by
the group membership Zi. To model their relationship in a SAC, we use a linear regression model
with a square root transformation on Xij (i.e. Yij = β0 + β1

√
Xij) because it produces the best fit

to the data, where the fit is measured in terms of mean squared error on a holdout set.

Figure 1: The mixture of SACs model.

The structure of the mixture model corresponds to
the following generative process. For each birder i,
we first generate its group membership Zi by draw-
ing from a multinomial distribution with parameter
π. Next, birder i produces Ni checklists. On each
checklist j, the expected number of species detected
is βZi · Xij . Finally, the number of species actu-
ally reported (Yit) is generated by drawing from a
Gaussian distribution with mean βZi ·Xij and vari-
ance σ2. Here we assume SACs in different groups
share the same variance σ2. The log-likelihood for
this mixture model is given in Equation 1.

logP (Y |X;π,β, σ2) =

M∑
i=1

log

 K∑
k=1

P (Zi = k;π)

Ni∏
j=1

P (Yij |Xij , Zi = k;β, σ2)

 (1)

2.1 Parameter estimation

During learning, we estimate the model parameters {π,β, σ2} and the latent group membership Z
for each birder using Expectation Maximization [2]. In the E-step, EM computes the expected group
membership for every birder i. In the M-step, we re-estimate the model parameters {π,β, σ2} that
maximize the expected complete log-likelihood in Equation 2.

Q = EZ|Y ,X [log(P (Y ,Z|X;π,β, σ2))]

=

M∑
i=1

K∑
k=1

EZ|Y ,X [I(Zi = k)] log

(
P (Zi = k;π)

Ni∏
j=1

P (Yij |Xij , Zi = k;β, σ2)

)
(2)

In the E-step, the expected group membership of birder i belonging to group k is computed as the
posterior probability rik in Equation 3.

rik = P (Zi = k|Xi·,Yi·;π,β, σ
2) =

P (Zi = k;π)
∏Ni

j=1 P (Yij |Xij , Zi = k;β, σ2)∑K
k′=1 P (Zi = k′;π)

∏Ni

j=1 P (Yij |Xij , Zi = k′;β, σ2)
(3)

In the M-step, we re-estimate {π, β, σ2} using the expected membership computed in the E-step.
To estimate πk, we introduce a Lagrange multiplier to ensure that the constraint

∑K
k=1 πk = 1 is

satisfied. i.e.
∑M

i=1 rik − λπk = 0. Summing over all k ∈ {1, · · · ,K}, we get the updating
equation for πk in Equation 4. The gradient of βk in Equation 5 has the same form as a linear
regression model, except that each instance is associated with a weight of rik. Thus we can use the
method of least squares to update βk efficiently. Finally, the parameter σ2 can be estimated using
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the closed-form solution in Equation 6. Given the expected memberships ri· of birder i, we then
assign birder i to the group of the largest expected membership.

πk =
1

M

M∑
i=1

rik (4)

∂Q
∂βk

=
1

σ2

M∑
i=1

rik

Ni∑
j=1

(Yij − βkXij)Xij (5)

σ2 =

∑M
i=1

∑K
k=1 rik

∑Ni

j=1(Yij − βkXij)
2∑M

i=1Ni

(6)

3 Results and discussion

We evaluate the mixture of SACs model in four different states (NY, FL,TX,CA) using the eBird
Reference Data [6]. First, we remove the birders who submitted fewer than 20 checklists in 2012
because their data is too sparse to fit our model. In addition, we limit our analysis to only include
checklists with duration less than 2 hours. To find the value of K, we randomly split birders into
training and validation sets and learn the mixture model using data submitted by birders in the
training set with different values of K ∈ {1, · · · , 6}. Then we calculate the average log-likelihood1

on the holdout data (data submitted by birders in the validation set) and choose the value of K when
increasing K does not improve the average log-likelihood. In Table 1, we show the average log-
likelihood on the holdout data in four states. It clearly shows that there are 3 distinct groups in all
four states.

State K=1 K=2 K=3 K=4 K=5 K=6
New York -3.456 -3.407 -3.396 -3.400 -3.406 -3.417
Florida -3.398 –3.389 -3.387 -3.393 -3.405 -3.419
Texas -3.543 -3.496 -3.491 -3.495 -3.501 -3.511
California -3.507 -3.483 -3.481 -3.489 -3.493 -3.501

Table 1: The average log-likelihood of the holdout data in four states. The numbers in bold indicate
the number of distinct groups found in that state.

Once we determine the best value of K for each state, we retrain the model using the entire eBird
data from 2012 and show the SACs of different groups learned from the mixture model. In Figure 2,
we sort the SACs by their slope coefficient β1 in decreasing order so that the top group corresponds
to the most skilled observers. For example, in New York there are 7% observers falling into the top
group as they are able to observe more species per unit of time.

A good partition of birders leads to distinct differences in the skill levels of different groups. Since
we do not have ground truth on the skill level of birders, we characterize their skill levels in terms of
their ability to identify hard-to-detect bird species. We use 6 hard-to-detect species in New York and
Florida suggested by experts at the Cornell Lab of Ornithology and calculate the average detection
rate of a species within each group in 2012. A birder’s detection rate of a species s is the percent of
their checklists reporting species s. In Table 2, the top group has the highest detection rate across
all 6 species, showing that a steeper SAC does in fact correspond to a better skill level. As we go
from group 1 to group 3, the detection rate of reporting these species keeps decreasing and shows
large differences even between two adjacent groups. These differences show that birders in different
groups vary greatly in their skill levels and the mixture model is able to cluster birders of similar
skills into the same group.

In addition, we sent a list of birder IDs in the top group for New York to the eBird project leaders
and asked them to verify if these birders are top-notch birders in the community. Out of 30 birders
in the top group, 25 are experts from the Cornell Lab of Ornithology or known regional experts in

1Calculated by computing the data likelihood of a birder and dividing by the number of checklists submitted
by that birder.
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Figure 2: Species accumulation curves learned from the mixture of SACs model in four states. The
number in the legend indicates the proportion of birders in each group.

New
York

Bank Swal-
low

Least Fly-
catcher

Marsh
Wren

Savannah
Sparrow

Swamp
Sparrow

Wood Thrush

Group 1 6.55± 1.17 5.56± 1.02 5.68± 1.22 9.45± 1.31 15.1± 1.38 9.23 ± 1.41
Group 2 2.48± 0.30 2.64± 0.26 2.91± 0.37 6.06± 0.61 10.2± 0.63 5.97 ± 0.52
Group 3 0.59± 0.08 1.09± 0.12 1.03± 0.13 2.21± 0.20 4.58± 0.37 3.92 ± 0.32
Florida Chimney

Swift
Hermit
Thrush

House
Wren

Marsh
Wren

Savannah
Sparrow

Yellow-rumped
Warbler

Group 1 9.69± 1.36 2.31± 0.42 15.0± 1.61 4.97± 0.90 11.7± 1.40 24.9 ± 1.74
Group 2 4.50± 0.51 1.11± 0.17 5.45± 0.54 1.86± 0.32 5.58± 0.40 16.2 ± 1.01
Group 3 2.99± 0.55 0.60± 0.13 1.80± 0.34 0.81± 0.15 2.78± 0.36 10.5 ± 0.96

Table 2: The average detection rate (with standard error) on 6 hard-to-detect species in NY and FL.

New York while the other 5 observers are known to be reputable birders submitting high quality
checklists to eBird.

4 Conclusion

We proposed a mixture model for Species Accumulation Curves that was successful at identifying
distinct groups of citizen scientists with similar skill levels in the eBird project. In addition, the
clusters discovered from NY data do in fact correspond to groups that vary in their ability to observe
hard-to-detect bird species. In future work, we plan to account for other factors in the model such
as location and extend this model to capture the evolution of an observer’s skill level over time.
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