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Abstract

Data quality is a common source of concern with large-scale citizen science
projects like eBird. In the case of eBird, poor quality data is often due to misiden-
tification of bird species by inexperienced contributors. One approach for improv-
ing data quality is to identify commonly misidentified bird species and to teach
inexperienced birders the differences between these species. In this paper, we de-
velop a latent variable model, based on a multi-species extension of the classic
occupancy-detection model in the ecology literature, that we can apply to eBird
data to discover pairs of bird species that observers often confuse for each other.

1 Introduction

Species distribution models (SDMs) estimate the pattern of species occurrence on a landscape based
on environmental features associated with each site. SDMs play an important role in predicting bio-
diversity and designing wildlife reserves [8, 11]. Learning accurate SDMs over a broad spatial and
temporal scale requires large amounts of observational data to be collected. This scale of data col-
lection is viable through citizen science, in which volunteers from the general public are encouraged
to contribute data to scientific studies [2]. For example, eBird [14, 7] is one of the largest citizen sci-
ence projects in existence, relying on a global network of bird-watchers to report their observations
of birds, identified by species, to a centralized database.

Although citizen scientists can contribute large quantities of data, data quality can be a concern [5,
15]. In eBird, individuals vary greatly in their ability to identify organisms by species. Inexperienced
observers either overlook or misidentify certain species and thus add noise to the data. One way to
handle noise is to explicitly model the observer’s expertise in SDMs [16]. A more proactive way to
improve data quality is to improve the species identification skills of inexperienced observers and
helping them correctly identify species that are commonly mistaken for each other.

To discover groups of misidentified species, we extend a well-known latent variable model in ecol-
ogy, the Occupancy-Detection model, to the multiple species case. The multi-species OD model
treats false positives for a species as arising from misidentifications of other species. We propose an
approach to learn both the model structure (i.e. species confusions) and the parameters of the model
from observational data. In our study, we show that explicitly modeling observer confusion between
species not only helps to discover groups of misidentified species, but also improves the estimates
of the occupancy patterns of those species.

2 The Occupancy-Detection model
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Figure 1: The single-species OD model

In SDMs, the occupancy of a site is the true
variable of interest, but this variable is typ-
ically only indirectly observed. Mackenzie
et al. [9] proposed a well-known site occu-
pancy model in ecology, which we call the
Occupancy-Detection (OD) model, that sepa-
rates occupancy from detection. Figure 1 shows
a plate diagram of the single-species OD model. The outer plate represents N sites. The variable
Xi denotes a vector of features that influence the occupancy pattern for the species (e.g. land cover
type) and Zi ∈ {0, 1} denotes the true occupancy status of site i. Site i is surveyed Ti times. The
variable Wit is a vector of features that affect the detectability of the species (e.g. time of day) and
Yit ∈ {0, 1} indicates whether the species was detected (Yit = 1) on visit t.

The structure of the OD model corresponds to the following generative process. For each site i,
we compute the probability oi that site i is occupied as oi = σ(Xi · α), where σ(·) is the logistic
function. Then the true occupancy Zi is generated by drawing from a Bernoulli distribution with
parameter oi. Next, the site is visited Ti times. At each visit t, we compute the detection probability
dit = σ(Wit ·β). Finally, the observation Yit is generated by drawing from a Bernoulli distribution
with parameter Zidit. Note that if Zi = 0, then Yit = 0 with probability 1, but if Zi = 1, then
Yit = 1 with probability dit. This encodes the assumption that there are no false positives in the
data.

3 The Multi-Species Occupancy-Detection model

Figure 2: The multi-species OD model

The multi-species OD (MSOD) model consists
of observed (Y) and latent binary variables (Z)
for every species as shown using plate notation
in Figure 2. Zis denotes the occupancy status
of species s at site i and Yits denotes the ob-
servation of species s at site i on visit t. Struc-
turally, the solid arrows in the plate diagram are
fixed and known in advance; the dotted arrows
are candidates to be added by the learning algo-
rithm. The joint probability distribution for the
MSOD model is given in Equation 1.

P (Y ,Z|X,W ) =

N∏
i=1

S∏
s=1

[
P (Zis|Xi)

Ti∏
t=1

P (Yits|Zi·,Wit)
]

(1)

Here, Zi· refers to all the S latent occupancy variables at site i. The species-specific occupancy
models (P (Zis|Xi) for each s) are parameterized as in the OD model, where Zis ∼ Bernoulli(ois)
and ois = σ(Xi · αs). The detection probabilities (P (Yits|Zi·,Wit) for each s) depend on the
occupancy status of species s (Zis) and the occupancy status of other species s′ (Zis′ , s′ 6= s) that
are parent nodes of the observation variable of species s (Yits).

3.1 Parameterization

We model the detection process based on the noisy-or parameterization of the QMR-DT network
for medical diagnosis [4, 13, 6]. The QMR-DT and MSOD models both consist of a set of latent
causal variables (diseases and true species occupancies, respectively) and observed evidence vari-
ables (symptoms and observations, respectively). The key differences from the QMR-DT network
are that the MSOD model has the same number of latent and observed variables and that the MSOD
model needs to learn the partially unknown structure from data.

More specifically, let ditrs be the probability that at site i on visit t, species s is reported because
species r is present. That is, ditrs = P (Yits = 1|Zir = 1) = σ(Wit · βrs). Let γ be the
adjacency matrix of {0, 1} that represents the graph structure between the occupancy variable Z and
the observation variable Y . γrs = 1 if species r can be confused for species s (i.e. there exists an
arrow from Zir to Yits) and 0 otherwise. Additionally, we allow the leak probability d0s of species
s to be the probability of an observation when the occupancy of its parent nodes are all false. Thus
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the probability of species s being reported during visit t at site i is given in Equation 2.

P (Yits = 1|Zi·,Wit) = 1− P (Yits = 0|Zi·,Wit) = 1− (1− d0s)
S∏
r=1

(1− ditrs)γrsZir (2)

3.2 Structure learning and parameter estimation

During training, we learn both the graph structure γ and the occupancy and detection parameters
(α and β). Given the unique bipartite graph structure of the MSOD model, we propose a structure
learning approach using linear relaxation. We relax the constraint that γrs ∈ {0, 1} to γrs ∈ [0, 1],
turning the integer program into a linear program. With this linear relaxation, we then estimate the
MSOD model parameters using Expectation Maximization [3]. In the E-step, EM computes the
expected occupancies Zi· for every site i using Bayes rule. In the M-step, we use L-BFGS-B [1] to
re-estimate the model parameters {α,β,γ} that maximize the expected log-likelihood in Equation
3.

Q = EZ|Y ,X,W [log(P (Y ,Z|X,W ))]

=

N∑
i=1

S∑
s=1

[
EZ|Y ,X,W [log(P (Zis|Xi))] +

Ti∑
t=1

EZ|Y ,X,W [log(P (Yits|Zi·,Wit))])
] (3)

In the learned adjacency matrix, γrs specifies the probability of species r being confused for species
s. We sort pairs of misidentified species according to their probability of misidentification in γ
and greedily add edges into the model structure until the log-likelihood on a validation set does not
improve. Once we determine the structure, we re-estimate the MSOD model (α and β) with a fixed
structure. Exact computation of the expectations in Equation 3 is computationally expensive with
large S; we will investigate speedups using variational approximations [6, 10, 12].

4 Evaluation and discussion

Evaluation of OD models and their variants is challenging because field data like eBird does not
include the ground truth of site occupancy and we do not have access to the true model structure
representing ”correct” species confusions. To evaluate the quality of the occupancy modeling com-
ponent of the models, we use synthetic data and compare the learned model to the true model used
to generate the data. We also show the model structures learned for two case studies using sets of
species known to be confused for each other in eBird.

4.1 Synthetic dataset

We generate synthetic data (“Syn”) for 500 sites and 3 visits per site,with 4 occupancy covariates and
4 detection covariates drawn i.i.d from a standard normal distribution. A true structure over 5 species
is generated by randomly adding 7 pairs of misidentified species. Coefficients for the occupancy and
detection models are also drawn i.i.d from standard normal distributions, and the leak probabilities
for all species are set to be 0.01 as background noise. We also generate two harder synthetic datasets
by allowing species occupancy interactions (“Syn-I”) and non-linear occupancy components (“Syn-
NL”). For each synthetic dataset, a training, validation and test dataset are generated following the
MSOD model, and this entire process is repeated 30 times to generate 30 datasets.

We compare the MSOD model against the standard OD model, a variant of the OD model called
ODLP, which allows a learned leak probability in the OD model, and the true latent model in terms
of predicting occupancy (Z) and observation (Y). We report the AUC and accuracy averaged over 30
datasets in Table 1. The standard OD model performs poorly because the no false positives assump-
tion does not hold. The ODLP model improves slightly over the OD model because it allows false
positives to be explained by the leak probability, but the leak probability itself can not accurately
capture the noise from the detection process. The performance of the MSOD model is closest to
the true model in predicting both occupancy from misidentified species and observation even with
species occupancy interactions and non-linear terms in the occupancy process.

We also compute a “structural AUC” to compare the learned model structure to the true model
structure. The structural AUC value, averaged over 30 datasets, specifies the probability of ranking
a true cross edge over an incorrect cross edge in the learned adjacency matrix. The MSOD model
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Occupancy (Z) Observation (Y )
AUC Accuracy AUC Accuracy

Sy
n

TRUE 0.941 ± 0.004 0.881 ± 0.004 0.783 ± 0.004 0.756 ± 0.004
OD 0.849 ± 0.006 0.758 ± 0.006 0.751 ± 0.005 0.739 ± 0.004

ODLP 0.868 ± 0.006 0.780 ± 0.007 0.752 ± 0.005 0.741 ± 0.004
MSOD 0.935± 0.005?† 0.872± 0.006?† 0.776± 0.004?† 0.750± 0.004?†

Sy
n-

I

TRUE 0.943 ± 0.003 0.885 ± 0.004 0.776 ± 0.003 0.763 ± 0.005
OD 0.842 ± 0.005 0.731 ± 0.010 0.744 ± 0.004 0.746 ± 0.006

ODLP 0.865 ± 0.005 0.757 ± 0.010 0.746 ± 0.004 0.747 ± 0.006
MSOD 0.925± 0.004?† 0.862± 0.006?† 0.763± 0.004?† 0.755± 0.006?†

Sy
n-

N
L TRUE 0.937 ± 0.003 0.878 ± 0.004 0.777 ± 0.005 0.762 ± 0.007

OD 0.837 ± 0.007 0.722 ± 0.010 0.739 ± 0.005 0.743 ± 0.007
ODLP 0.848 ± 0.007 0.734 ± 0.009 0.741 ± 0.005 0.744 ± 0.007
MSOD 0.903± 0.006?† 0.842± 0.007?† 0.755± 0.004?† 0.751± 0.007?†

Table 1: The AUC and accuracy of occupancy and observation prediction (with standard error) over
30 synthetic datasets. These metrics are computed per species and averaged across species. ? and †
indicate the MSOD model is statistically better than the OD model and the ODLP model.

archives AUC value of more than 0.97 in all three synthetic data, indicating that the MSOD model
almost always discovers the correct species confusions.

4.2 eBird dataset

We also test the ability of the MSOD methods to recover sensible structures on two case studies
involving real-world eBird data, which was selected by consulting with experts at the Cornell Lab
of Ornithology. We evaluated MSOD on subsets of eBird species that include some species known
to be confused for each other and a distractor species with minimal similarity to the others.

In the Hawks case study, we consider the Cooper’s Hawk and Sharp-shinned Hawk, and Turkey
Vulture as a distractor species in California. In the Woodpeckers case study, we consider the Hairy
Woodpecker and Downy Woodpecker, and Dark-eyed Junco as a distractor species in California. We
show the learned model structures in Figure 3. The arrows specify the species confusions recovered
by the MSOD model, e.g. Sharp-shinned Hawk and Cooper’s Hawk are confused for each other, and
Hairy Woodpecker is likely to be confused for Downy Woodpecker. For both cases, the structure
recovered matches our expectations, and the confusion probability is higher on the arrow from the
rarer species of the two to the more common one, indicating that inexperienced observers tend to
misidentify the rarer species for the more common one due to their lack of birding skills.

(a) Hawks case study (b) Woodpecker case study

Figure 3: The arrows specify the species confusions recovered by the MSOD model.

5 Conclusion

We introduce the multi-species OD model to identify species confusions and show promising pre-
liminary results on both synthetic and eBird data. We plan to apply this model to discover species
confusions in eBird that are not already known.
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