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Abstract 
Citizen science presents opportunities for crowdsourcing to produce new 
sources of data that were previously unavailable and even unimaginable. 
While engaging distributed observer networks is a well-established method 
for collecting spatiotemporally diverse observational data, ensuring data 
quality remains a key concern. Related problems of observer reliability, 
scalability of data verification processes, geospatial biases of observations, 
and motivating participation are central challenges for citizen science. This 
paper describes a multidisciplinary strategy for addressing these concerns in 
eBird through the development of a human-computer learning network. 

1 Introduction 
The transformational power of modern computing, together with information and 
communication technologies, creates new opportunities to engage the public in participating 
in and contributing to myriad scientific, business, and technical challenges. For example, 
large-scale citizen science projects such as Galaxy Zoo, eBird, and FoldIt demonstrate the 
power of crowdsourcing for investigating complex scientific problems. 

In this paper, we describe citizen science in the context of crowdsourcing scientific data 
collection and verification. The eBird project provides an example of a human-computer 
learning network (HCLN) that will leverage the aggregated data provided by volunteers to 
improve the quality of crowdsourced data.  

1 . 1  C r o w d s o u r c e d  D a t a  a n d  Q u a l i t y  

Crowdsourcing is an ill-defined but increasingly common term that refers to a set of 
distributed production models. Initially used to describe an outsourcing strategy that makes 
an open call for contributions from a large, undefined network of people [1], it was 
introduced as a novel alternative business model.  

Early definitions of crowdsourcing focused on corporate entities in drawing on the “wisdom 
of crowds” [2], but more recent popular use has applied the term to any form of collective 
intelligence that draws on large numbers of participants through the Internet. In many 
scientific contexts, doubts arise as to the value of crowdsourcing, primarily regarding 
veracity and accuracy of crowdsourced research product, or data quality, used here to mean 
the fitness of the data for its intended purpose. 



1 . 2  C i t i z e n  S c i e n c e  f o r  C r o w d s o u r c e d  D a t a  

Citizen science projects enlist the public in scientific endeavors [3], and can provide data 
with more intensive sampling through longer periods of time and across broader spatial 
extents. Volunteers can collect large amounts of data at comparatively little cost to the 
scientific research enterprise [4]. Furthermore, engaging citizen scientists in meaningful 
research projects can enrich the public understanding of the scientific process, which in turn 
can lead to better-informed decision making at all levels of society [5]. 

Data quality is an important issue in citizen science because data contributors often have 
little or no scientific training. Distributed and large-scale participation eliminates the options 
of supervision or ground-truthing to ensure data quality. Consequently, the quality of the 
data collected by volunteers is often questioned. While most citizen science projects employ 
multiple strategies to improve data quality [6], observational data that rely on species 
detection and identification skills remain particularly challenging. While volunteers can 
provide accurate data for easily detected organisms [7], Fitzpatrick et al. [8] found 
differences between volunteers and professionals for difficult-to-detect organisms led to 
biases in the data [9]. These issues affect many citizen science projects, such as eBird. 

1 . 2   e B i r d  

The eBird project, launched in 2002 by the Cornell Lab of Ornithology and National 
Audubon Society [10], is one of the largest citizen science programs in existence. eBird 
maintains an online database that allows bird watchers (known as birders) to record the bird 
species they have seen or heard. eBird’s goal is to maximize the utility and accessibility of 
the millions of bird observations made each year by recreational and professional birders. 

Data quality is a major issue for eBird, particularly regarding an observer’s ability to 
correctly identify birds to the taxonomic level of a species. A network of 450 expert 
volunteers create checklist filters for outliers and review the resulting flagged records. 
Reviewers draw upon local bird expertise to create filters delineating when and how many of 
each species are expected in a specific region. Reviewers also contact individuals for more 
information to confirm unusual records. eBird’s success now generates millions of new 
observations per month, overwhelming the reviewer network with about one million records 
to review in 2012. This also stymies further growth due to scalability constraints. 

New methods for improving eBird data quality further leverage the aggregated data 
generated by participation. These include emergent filters and modeling participant 
expertise, both of which are dependent upon the volume of existing data. More work is 
needed to incentivize further contribution, both to generate adequate volumes of data to 
support data quality automation and to reduce geospatial bias in the data.  

2 The eBird Human-Computer Learning Network  

To address these inter-related issues, the eBird Human-Computer Learning Network (HCLN) 
will combine emerging techniques that integrate the speed and scalability of mechanical 
computation, using advances in Artificial Intelligence (AI), with the real intelligence of 
human computation to solve computational problems that are beyond the scope of existing 
algorithms [11]. In addition to developing emergent filters and new models of contributor 
expertise, this work is novel in that it makes extensive use of the semantic links between 
observations and observers to mine additional information from the existing data in order to 
strategically address data quality issues. 

eBird’s data contain the following information: observer, location, visit, species, and number 
observed. Information about the observer, such as name and contact information, allow 
every bird observation to be attributed to a specific person. Location data include site name, 
coordinates, and the geographic area it represents for every visit to that location. Information 
about a specific visit includes date and time, amount of effort expended, and whether all 
observed species were reported. Species observations consist of a bird checklist and counts 
of individuals of each species. These data form the core of the eBird database, enabling 
advanced computational methods to improve data quality while reducing human review. 

Three core components of the eBird HCLN are discussed briefly below; each uses existing 
data stores to generate additional value from the original crowdsourced data. 



2 . 1  M o d e l i n g  C o n t r i b u t o r  E x p e r t i s e  

In order to incorporate birder expertise into a species distribution model, we need to 
distinguish between two processes that affect observations: occupancy and detection. 
Occupancy determines if a geographic site is viable habitat for a species. Detection describes 
the observer’s ability to detect the species and depends on the difficulty of identifying the 
species, effort put in by the birder, current weather conditions, and birder expertise. 

To evaluate birder expertise, we modified existing Occupancy-Detection models to include 
detection parameters for novices and for experts. These features are useful if the detection of 
a species is different for experts versus novices. It also allows for false detections by both 
experts and novices to improve predictive ability because experts can be over-enthusiastic 
about reporting bird species under certain circumstances. As a result, the detection 
probabilities for novices and experts in the resulting Occupancy-Detection-Expertise (ODE) 
model include both true and false detection probabilities for experts and for novices [9]. 

In preliminary testing, the ODE model outperformed multiple comparison models. In 
addition, experts and novices appear to have very similar true detection probabilities for 
common bird species. For hard-to-detect bird species the differences are much larger, 
however, making this a promising approach to identifying differences in how experts and 
novices report bird species. 

2 . 2  E m e r g e n t  f i l t e r s  

eBird currently relies on expert-defined checklist filters, but could improve data quality 
through more fine-grained checklist filters based on historical data for each location. 
Automating filter development would also reduce demands on the already overtaxed 
volunteer reviewer network. 

The emergent filters are calculated from existing data for the observation location, based on 
daily frequencies for every species reported there [12]. These filters can be tuned to 
threshold occurrence frequencies to identify outlier observation at any level of specificity. 
The emergent filters also have potential to identify outlier reports for common birds that 
would otherwise be overlooked with expert-defined filters, further improving data quality. 

In combination with the automatic ranking of expertise discussed above, emergent filters 
have potential to substantially improve data quality and lighten the load on reviewers, whose 
time is a limited resource. Combined into a two-step process, these tools would first reliably 
identify outliers, and then classify those outliers. Uniquely, outliers are not removed but 
instead classified as either unusual or erroneous. This process requires sufficient domain 
knowledge (e.g., understanding of the patterns of bird distributions) to distinguish between 
types of outliers, and sufficient data so that a quality filter can emerge from the data [12]. 
One challenge in fully implementing this approach is the current biases with the geospatial 
coverage of data submitted by volunteers. 

2 . 3  I m p r o v i n g  s p a t i a l  c o v e r a g e  

Another substantive problem in citizen science data quality is the spatial bias in favor of 
locations near population centers [13]; our work in this area is still in progress. It will 
integrate Active Learning feedback loops to guide volunteers’ sampling process toward 
improving current models by filling in gaps. 

We plan to employ a variation on the Traveling Salesman Problem with Active Learning 
processes to improve predictive models by providing a context to advise participants where 
to sample next, in the form of proposed birding routes for any starting location and level of 
effort planned. Such sampling paths could be incorporated into games and optimized to 
enhance both the machine learning elements of the system and the overall birding 
experience. These dynamic, adaptive paths would serve the mutual interests of volunteers 
and researchers by proposing personalized routes to hone individual detection capabilities or 
increase the probability of recording a species never previously observed, while 
simultaneously increasing geospatial coverage. 
 
  



3 Conclusion  
Our work on the eBird HLCN involves translating the preliminary studies described above 
into an integrated system that fully maximizes the return on investment for data 
contributions from citizen scientists [13]. Additional evaluation will focus on questions such 
as whether displaying expertise rankings has motivational effects and whether the system 
encourages expanded participation or increased learning, and on better understanding 
volunteers’ detection capabilities to further improve expertise measurements and rankings. 

In a project like eBird, with a broad and active citizen science volunteer constituency, well 
managed cyberinfrastructure provides a unique opportunity to test and deploy new 
techniques that tackle some of the most pressing issues of data quality applicable to any 
citizen science project. While our focus is on techniques to address errors in data 
submission, variability in observer skills, and spatial coverage biases in eBird, these 
strategies have wide applicability across the broader citizen science field of practice. 
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