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Abstract

In this paper, we consider the link prediction problem, vehee are given a par-
tial snapshot of a network at some time and the goal is to gredditional links

at a later time. The accuracy of the current prediction mighe quite low due
to the extremeslass skew and the large number of potential links. In this paper,
we describe learning algorithms based on chance condirpilograms and show
that they exhibit all the properties needed for a good lirddpstor, namely, al-
low preferential bias to positive or negative class; handieewness in the data;
and scale to large networks. Our experimental results on three realdvco-
authorship networks show significant improvement in préalicaccuracy over
baseline algorithms.

1 Introduction

Network analysis, including social networks, biologicaftworks, transaction networks, the web,
and a large assortment of other settings, has received &itiecest in recent years. These networks
evolve over time and it is a challenging task to understaedifmamics that drives their evolution.
Link prediction is an important research direction withiistarea. The goal here is to predict the
potential future interaction between two nodes, given aigdacurrent state of the graph.

This problem occurs in several domains. For example: inigitanetworks describing collaboration

among scientists, where we want to predict which pairs df@nstare likely to collaborate in future;

in social networks, where we want to predict new friendshépsl in biological networks where we

want to predict which proteins are likely to interact. On titeer hand, we may be interested in
anomalous links; for example, in financial transaction meks, where unlikely transactions might
indicate fraud, and on the web, where they might indicatenspa

There is a large literature on link prediction [4]. Early apgches to this problem are based on
defining a measure for analyzing theoximity of nodes in the network [1, 16, 10]. For example,
shortest path, common neighbors, katz measure, Adamicesciafall under this category. Liben-
Nowell and Klienberg [10] studied the usefulness of all thiegpological features by experimenting
on bibliographic datasets. It was found that, no one measwéperior in all cases [10]. Statistical
relational models were also tried with some amount of sicfgs6, 19, 17]. Recently, the link
prediction problem is studied in the supervised learniagnework by treating it as an instance of
binary classification [7, 8, 3, 20, 21]. These methods usddpelogical and semantic measures
defined between nodes as features for learning classifiéven @ snapshot of the social network
at timet for training, they consider all the positive links presentime ¢ as positive examples and
consider a large sample of negative links (pair of nodes kviie not connected) at timas negative
examples. The learned classifiers performed consistatitiypugh the accuracy of prediction is still
very low. There are several reasons for this low predictiocueacy. One of the main reasons is
the huge class skew associated with link prediction (indargtworks, it's not uncommon for the
prior link probability on the order o§.0001 or less); this makes the prediction problem very hard,



resulting in poor performance. In addition, as networksavover time, the negative links grow
guadratically whereas positive links grow only linearlyttwhew nodes. Further, in some cases we
are more concerned witlnk formation, the problem of predicting new positive links, and in other
cases we are more interestedaimomalous link prediction, the problem of detecting unlikely links.
In general, we need the following properties for a good lirddictor: allowpreferential biasto the
appropriate class; handdkewness in the datascale to large networks.

Chance-constraints and second order cone programs(SQIPshich are a special class of con-
vex optimization problems have become very popular latilg to the efficiency with which they
can be solved using methods for semi-definite programs, asiéghiterior point methods. They are
used in a variety of settings such as feature selection §ling with missing features [18], classi-
fication and ordinal regression algorithms that scale welaatasets [15], and formulations to deal
with unbalanced data [14, 13]. These probabilistic coirgsacan be converted into deterministic
ones using Chebyschev-Cantelli inequality, resulting 8CQCP. The complexity of SOCPs is mod-
erately higher than linear programs and they can be solvied) general purpose SOCP solvers
like SeDuMi®. These classification algorithms that use chance-congraatisfy all the require-
ments needed for learning a good link predictor as menti@@de. In this work, we show how
these learning algorithms based on chance-constraintsscased for link prediction to significantly
improve its performance. The main contributions of thisgrdpclude:

¢ We identify the important requirements of link predicti@sk and formulate it using the
framework of chance-constrained programming, satisfgihthe requirements.

e We show how this framework using chance-constraints carsee im different link predic-
tion scenarios including ones where positive links are nimygortant than negative links
(e.g., link formation), and vice versa (e.g., anomaloug liliscovery) and the cases in
which we see a lot of missing features.

e We perform a detailed evaluation on three real-world cdvarsghip networks: DBLP, Ge-
netics and Biochemisty to investigate the effectivenessiofnethods. We show significant
improvement in link prediction accuracy.

The outline of the paper is as follows: In Section 2, we explaiax-margin learning algorithms
based on chance-constraints. We then describe how theyecasel for link prediction problems.
We describe applications of this framework in a variety dfedent settings in Section 3. In Sec-
tion 4, we describe the datasets used for the experimenttharfdatures used by our learning al-
gorithms, discuss the evaluation metrics, and presentropirigal evaluation. Finally, we conclude
with some future directions in this line of research.

2 Learning algorithms using Chance-Constraints

In this work, we consider the link prediction problem as astamce of binary classification. We are
given training dat& = {(z1,41), (x2,92), - , (zn, yn)} Where, each; € R is a feature vector
defined between two nodes agde {—1,+1} is the corresponding label i.e., +1 and -1 stands for
the presence or absence of an edge between the two nodes chseythe data is extremely skewed
i.e., the number of negative examplesthe number of positive examples. For now, we work with
only linear decision functions of the foryi(z) = w”x —b. However, all the formulations described
below can be kernelized to construct non-linear classifiers

2.1 Clustering-based SOCP formulation (CBSOCP)

In this formulation, we assume that class conditional dexssof positive and negative points can
be modeled as mixture models with component distributiomgny spherical covariances. Let
k1 andky denote the number of components in the mixture model fortipesand negative class
respectively. We can cluster the positive and negativetpaaparately and estimate the second
order momentgy, 02) of all the clusters. Given these second order moments, wé todind a
discriminating hyperplane”’ z — b = 0, which separates these positive and negative clusterse Mor
specifically, we want that with a very high probability anyimtan these clusters to lie on the correct
side of the hyperplane.

Yhttp://sedumi.ie.lehigh.edu
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Here X; and X; are random variables corresponding to the components ofmtkiire models
for positive and negative classes, amdand n, lower bound the classification accuracy of the
two classes. The above probabilistic constraints can benras deterministic constraints using
Chebyshev-Cantelli inequality [12]. For further details this conversion, readers are referred to
[15, 13]. After this conversion and allowing slack variafgeto handle noise leads us to the follow-
ing soft-margin SOCP optimization problem:

Styl(’LUT/J,Z—b) > ].—fi—‘rlﬁlO'iWIVZ': 1,--- Kk (2)
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wherex; = , /% andW is a user-defined parameter which lower bounds the margi the
1-n

two classes. The geometric interpretation of this forniaieats that of finding a hyperplane which
separates the positive and negative spheres whose camdaeds arei; andx,;o; respectively (See
Figure 1(b)). Note that if we consider each point as one ehist= 0), then the above formulation
is exactly the same as SVMs. By solving the above SOCP probienget the optimum values of
w andb, and a new data point can be classified as sign” x — b).

This formulation is much more scalable to large datasetalserthe number of constraints in this
formulation is linear in the number of clusters, whereasim@ber of constraints in SVM formula-
tion is linear in the number of data points. It also allowsamtroduce preferential bias by varying
m andns. In the case of link formation, we want to give more impor&ana positive links than
negative links, i.eaq; > ns.

However, this cannot handle the case of unbalanced datasi®pée way to overcome this problem
is to balance the data by constraining the number of clugteemd k- i.e., k; =~ k. Note that,
the assumption that mixture components have sphericatiaoes is a strong one. We conjecture
that considering either diagonal or full covariance matistead of spherical covariances might give
better results. However, we do not pursue this directioruincoirrent work.

2.2 Max-Margin formulation with specified lower bounds on accuacy of the two
classes(LBSOCP)

SupposeX; and X, represent the random variables which generate the datésfoam positive
and negative class respectively. In this formulation, &#ssumed that the class conditional densities
can be modeled as Gaussians with megns ™ andX; € R™*" for; = 1, 2. We also assume that
11 andns, the lower bounds on classification accuracies of the twesels, are given to us. The goal
here is to construct a max-margin classifier with desireceldmounds on classification accuracies.
Consider the following formulation:

. 1
min o [lw,
St.Pr(X; €eHy) <1—m (3)
PT‘(XQ S 7‘[1) <1l-—mn
X1~ (p1,21), Xo ~ (p2, X2)
whereH; andH, denote the positive and negative half spaces respectileé/chance-constraints
Pr(X; € Ha) <1—m andPr(Xs € H1) < 1 — 19 specify that false-negative and false-positive

rate should not excedd- 1, and1 —ns respectively. The above chance-constraints can be ceavert
into deterministic ones using multi-variate generalizatf Chebyshev-Cantelli inequality [12, 14,
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Figure 1. Geometric interpretation for (a) SVM (b) CBSOCPLBSOCP (d) Effect of); on margin

13]. After this conversion and re-writing it in standard S®form, we get the following formulation,

min ¢
w,b,t
stt> uwl, @
wTul —b>1+4+ kK HC;‘FwH2
b— wTul > 1+ Ko HC’2Tw||2
where,x; = 1 andC; andC, are square matrices such that = C;C{ and¥y = C,CT

1=n;’
Note that, there exist such square matrices slacand X, are positive semi-definite. The geo-
metrical interpretation of the above constraints is thdirafing a hyperplane which separates the
positive and negative ellipsoids whose centers aye atnd 12, shapes determined liy; andCs,
and size bys; andx, respectively i.e.B(u;, Cy, ;) = {z|(x — )T S ' (x — p;) < k2 }(see Fig-
ure 1 (c)). Itis important to note that, the margin of the sifisr changes for different values of
7; (see Figure 1 (c) and Figure 1 (d)). By solving the above SO@BIpm using standard SOCP
solvers like SeDuMi, we get the optimum valuesw©éndb, and a new data pointcan be classified
as sigiw’x — b).

This formulation has all the properties needed for the lirddiction task. By varying the values of
m andnz, we can introduce preferential bias towards positive lindsn, > n-. It is scalable and
can also handle unbalanced data.

3 Applications of the CCP framework

In this section, we will explain how our CCP framework can Bedifor a variety of applications in
network analysis without any further changes. It is impairta note that, the framework is flexible
enough to be used in both the cases where positive links areimportant than negative links and
vice versa. For example, in link formation we want to give mmonportance to positive links i.e,
71 > 12 and in the case of anomalous link discovery we want to giveenmaportance to negative
links i.e.,n2 > n1. We consider the applications that fall under both thesegraies separately and
provide generic solutions that can be used across a wide @rapplications. Since we are working



with max-margin classifiers, our solutions are based on tyim of the learned classifier which is
defined agw’'z — b|.

Positive links are more important: In this case, we use a validation set to determine the pesitiv
thresholdm ., which is defined as the minimum margin above which majoritthe positive links
lie. Therefore, any positive link which has a margin morentha, will be positive with very
high probability. Now during testing, we can rank all the ifies links with marginm > m
according to their margin and such a ranked list can be useatiety of applications. For example,
to recommend friends in an online social network(OSN), g&émcollaborative filtering, etc.

Negative links are more important: Similar to the previous case, we use the validation set to de-
termine the negative threshatd_, which is defined as the minimum margin above which majority
of the negative links lie. Therefore, any negative link whitas a margin more than_ will be
negative with very high probability. Now during testing,nsider the set of all negative links with
marginm > m_. We can use this list of negative links for anomalous linlcdigry such as fraud
detection, i.e., if any of these negatively predicted lirskactually seen as a positive link, then it can
be flagged as anomalous.

Missing features: In both the above cases, we may have some features missingx&wople, if
we use node attributes as features like user profiles in O8is1 we may find incomplete profiles
leading to missing features. And, chance-constrainedrpmog can be used to handle this problem
as well. For more details on this, readers are referred tp [18

4 Experimental Results and Discussion

In this section, we describe our experimental setup, detsani of datasets, features used for learning
the classifier, evaluation methodology, followed by ouutessand discussion.

Datasets:We run our experiments on three real-world co-authorshipvorks, which are the same
as the ones used in [20]. DBLP dataset was generated using @Bllection of computer science
articles.? It contains all the papers from the proceedings of 28 confare related to machine
learning, data mining and databases from 1997 to 2006. @sr#taset contains articles published
in 14 journals related to genetics and molecular biologyfit®96 to 2005. Biochemistry dataset
contains articles published in 5 journals related to biotis&y from 1996 to 2005. The genetics
and biochemistry datasets were generated from the popultavid database.

Dataset No. of authors| No. of papers| No. of edges
DBLP 23,136 18,613 56,829
Genetics 41,846 12,074 1,64,690
Biochemistry 50,119 16,072 1,91,250

Table 1: Data Description

Experimental setup: We form the training dataset for our experiments in the samag & done

in [20], which is as follows: For each dataset we have the ftata0 years. We consider the data
from first 9 years for training and the data from the 10th yeatdsting. We consider all those links
formed in the 9th year as positive training examples and gratithe negative links (those links that
are not formed in the first 9 years), we randomly collect adagmple and label them as negative
training examples. Note that the features of these traisikagnples are constructed based on the
first 8 years of data. Similarly for the test set, we considietha links that are formed during the
10th year as positive examples and collect a sample of ali¢igative links as negative examples.
Note that the features of these testing examples are cotedrbased on the first 9 years of data.

Feature description: We used the same set of features between nodes as used i [&0)].de-
scription is as followsCommon neighbors: the number of common neighbors for the two authors
during training, Social connectivity: the total number of neighbors the two authors have during
training, Sum of papers. the number of papers the two authors have written togethargltraining,

2http://dblp.uni-trier.de/
3http:/iwww.ncbi.nim.nih.gov/entrez



Approximate Katz measure; Katz measure approximated to paths up to length 4 with distdaator
~ = 0.8 andSemantic feature: the cosine similarity between the titles of the papers amithy the
two authors during training.

Evaluation: We use precision and recall metrics from Information Re#lieontext for evaluation,
and compare the chance-constraints based algorithms (CB2@d LBSOCP) against SVMs and
perceptron with uneven margins (PAUM) [9]. We selected PAEI®a strong baseline because it
allows us to differentially emphasize the accuracies ofteclasses based on positive and negative
margins,7 and7_. We rank all the test examples according to the margin of tssiiers and
calculate precision and recall from Top-k by varying theueabf k. Here, precision is defined as
the percentage of true-positive links that were predictadectly among the Top-k and recall is
defined as the percentage of true-positive links that wesdipted correctly out of the total true-
positive links. We report the best results for SVMs by tunitsgyC' parameter on validation set
and for CBSOCP, we us#/ = 1, i.e., we want a margin of at least 1 between the two classes.
For PAUM, we pick the best values fer. from {-1.5,—-1,-0.5,0,0.1,0.5,1} and forr from
{-1,-0.5,0,0.1,0.5,1,2,5,10,50} based on the validation set. We ran PAUM for a maximum of
1000 iterations or until convergence. Due to space comsaive show the precision and recall
curves for only one setting;; = 0.9 and»n, = 0.7. But we see the same kind of behavior for other
similar configurations ofy; andn, as well.

The precision and recall curves for all the 3 datasets amrsio Figure 2, Figure 3 and Figure 4.
As we can see, LBSOCP and CBSOCP significantly outperform ¥l PAUM in both preci-
sion and recall for all the 3 datasets, except for biocheynishere PAUM performs better. Also,
LBSOCP performs better than CBSOCP as expected. We achimeakh of 52.79% and 46.23%
using LBSOCP and CBSOCP when compared to 28.5% of SVMs aa@%3of PAUM for DBLP
dataset, 39.28% and 22.87% when compared to 13.39% of SVi3.66% of PAUM for Genet-
ics dataset, and 55.09% and 46.94% when compared to 25.48¥M§ and 63.37% of PAUM
for Biochemistry dataset. Encouragingly, LBSOCP and CBB@¢Chieve a very good (80-90% of
their overall recall) recall withire Top-1000, which makes it a very good candidate for applica-
tions like recommendation and collaborative filtering whéris property is very important. The
reason why SVMs fail badly here is due to highly skewed classilution. They try to get more
negative examples correctly and in this process they findpaipyane which has large margin for
negative examples. We can clearly observe this behaviouimesults - SVMs predict majority of
its true-positives at the very end of the Top-k. With cargfatameter tuning, PAUM can perform
better in some cases (as we see with biochemistry datasené cannot quantitatively relate these
parameters to the performance.

We show the training times of different learners on varioatadets in Table 2. As we can see, both
CBSOCP and LBSOCP are orders of magnitude faster than SVMPAWIMM, which makes them
attractive to large networks. Note that, the SVMs were &dinsing popular LIBSVM and time
would have been shorter if trained with SVMperf.

Learner SVM | PAUM | CBSOCP| LBSOCP
DBLP 29.03| 16.25 0.12 0.03
Genetics 265.77| 27.30 2.00 0.02
Biochemistry | 307.32| 42.30 3.00 0.01

Table 2:; Training time results (in secs)

5 Conclusions and Future Work

In this work, we showed how learning algorithms based on chamonstraints can be used to solve
link prediction problems. We showed that they significamtiyprove the prediction accuracy over
the traditional classifiers like SVMs. We explained how ganfiework using chance-constraints can
be used in different scenarios—where positive links are rimopertant than negative links (e.g., link
formation prediction), where negative links are more int@orthan positive links (e.g., anomalous
link discovery) and cases in which we see a lot of missingufest In the future, we would like to
experiment with other co-authorship networks ldeXiv and test this framework in other settings
like collaborative filtering, anomalous link discovery dimtk prediction cases with missing features.



We would like to extend the current framework to a relatisgeiting similar to Taskar’s work [19].
However, formulating it as relational or structured préidic poses an enormous inference problem,
especially in large networks. One possible approach iske gamiddle path between complete
independence and arbitrary relational structure.
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Figure 2: Precision and Recall curve for DBLP dataset
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