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Abstract

In this paper, we consider the link prediction problem, where we are given a par-
tial snapshot of a network at some time and the goal is to predict additional links
at a later time. The accuracy of the current prediction methods is quite low due
to the extremeclass skew and the large number of potential links. In this paper,
we describe learning algorithms based on chance constrained programs and show
that they exhibit all the properties needed for a good link predictor, namely, al-
low preferential bias to positive or negative class; handleskewness in the data;
and scale to large networks. Our experimental results on three real-world co-
authorship networks show significant improvement in prediction accuracy over
baseline algorithms.

1 Introduction

Network analysis, including social networks, biological networks, transaction networks, the web,
and a large assortment of other settings, has received a lot of interest in recent years. These networks
evolve over time and it is a challenging task to understand the dynamics that drives their evolution.
Link prediction is an important research direction within this area. The goal here is to predict the
potential future interaction between two nodes, given a (partial) current state of the graph.

This problem occurs in several domains. For example: in citation networks describing collaboration
among scientists, where we want to predict which pairs of authors are likely to collaborate in future;
in social networks, where we want to predict new friendships; and in biological networks where we
want to predict which proteins are likely to interact. On theother hand, we may be interested in
anomalous links; for example, in financial transaction networks, where unlikely transactions might
indicate fraud, and on the web, where they might indicate spam.

There is a large literature on link prediction [4]. Early approaches to this problem are based on
defining a measure for analyzing theproximity of nodes in the network [1, 16, 10]. For example,
shortest path, common neighbors, katz measure, Adamic-adar etc. fall under this category. Liben-
Nowell and Klienberg [10] studied the usefulness of all these topological features by experimenting
on bibliographic datasets. It was found that, no one measureis superior in all cases [10]. Statistical
relational models were also tried with some amount of success [5, 6, 19, 17]. Recently, the link
prediction problem is studied in the supervised learning framework by treating it as an instance of
binary classification [7, 8, 3, 20, 21]. These methods use thetopological and semantic measures
defined between nodes as features for learning classifiers. Given a snapshot of the social network
at timet for training, they consider all the positive links present at time t as positive examples and
consider a large sample of negative links (pair of nodes which are not connected) at timet as negative
examples. The learned classifiers performed consistently,although the accuracy of prediction is still
very low. There are several reasons for this low prediction accuracy. One of the main reasons is
the huge class skew associated with link prediction (in large networks, it’s not uncommon for the
prior link probability on the order of0.0001 or less); this makes the prediction problem very hard,
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resulting in poor performance. In addition, as networks evolve over time, the negative links grow
quadratically whereas positive links grow only linearly with new nodes. Further, in some cases we
are more concerned withlink formation, the problem of predicting new positive links, and in other
cases we are more interested inanomalous link prediction, the problem of detecting unlikely links.
In general, we need the following properties for a good link predictor: allowpreferential bias to the
appropriate class; handleskewness in the data;scale to large networks.

Chance-constraints and second order cone programs(SOCPs)[11] which are a special class of con-
vex optimization problems have become very popular lately,due to the efficiency with which they
can be solved using methods for semi-definite programs, suchas interior point methods. They are
used in a variety of settings such as feature selection [2], dealing with missing features [18], classi-
fication and ordinal regression algorithms that scale to large datasets [15], and formulations to deal
with unbalanced data [14, 13]. These probabilistic constraints can be converted into deterministic
ones using Chebyschev-Cantelli inequality, resulting in aSOCP. The complexity of SOCPs is mod-
erately higher than linear programs and they can be solved using general purpose SOCP solvers
like SeDuMi 1. These classification algorithms that use chance-constraints satisfy all the require-
ments needed for learning a good link predictor as mentionedabove. In this work, we show how
these learning algorithms based on chance-constraints canbe used for link prediction to significantly
improve its performance. The main contributions of this paper include:

• We identify the important requirements of link prediction task and formulate it using the
framework of chance-constrained programming, satisfyingall the requirements.

• We show how this framework using chance-constraints can be used in different link predic-
tion scenarios including ones where positive links are moreimportant than negative links
(e.g., link formation), and vice versa (e.g., anomalous link discovery) and the cases in
which we see a lot of missing features.

• We perform a detailed evaluation on three real-world co-authorship networks: DBLP, Ge-
netics and Biochemisty to investigate the effectiveness ofour methods. We show significant
improvement in link prediction accuracy.

The outline of the paper is as follows: In Section 2, we explain max-margin learning algorithms
based on chance-constraints. We then describe how they can be used for link prediction problems.
We describe applications of this framework in a variety of different settings in Section 3. In Sec-
tion 4, we describe the datasets used for the experiments andthe features used by our learning al-
gorithms, discuss the evaluation metrics, and present our empirical evaluation. Finally, we conclude
with some future directions in this line of research.

2 Learning algorithms using Chance-Constraints

In this work, we consider the link prediction problem as an instance of binary classification. We are
given training dataD = {(x1, y1), (x2, y2), · · · , (xn, yn)} where, eachxi ∈ ℜn is a feature vector
defined between two nodes andyi ∈ {−1,+1} is the corresponding label i.e., +1 and -1 stands for
the presence or absence of an edge between the two nodes. In our case, the data is extremely skewed
i.e., the number of negative examples≫ the number of positive examples. For now, we work with
only linear decision functions of the formf(x) = wT x−b. However, all the formulations described
below can be kernelized to construct non-linear classifiers.

2.1 Clustering-based SOCP formulation (CBSOCP)

In this formulation, we assume that class conditional densities of positive and negative points can
be modeled as mixture models with component distributions having spherical covariances. Let
k1 andk2 denote the number of components in the mixture model for positive and negative class
respectively. We can cluster the positive and negative points separately and estimate the second
order moments(µ, σ2) of all the clusters. Given these second order moments, we want to find a
discriminating hyperplanewT x− b = 0, which separates these positive and negative clusters. More
specifically, we want that with a very high probability any point on these clusters to lie on the correct
side of the hyperplane.

1http://sedumi.ie.lehigh.edu
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Pr(wT Xi − b ≥ 1) ≥ η1 : ∀i ∈ {1 · · · k1}

Pr(wT Xj − b ≤ −1) ≥ η2 : ∀j ∈ {1 · · · k2}
(1)

Here Xi and Xj are random variables corresponding to the components of themixture models
for positive and negative classes, andη1 and η2 lower bound the classification accuracy of the
two classes. The above probabilistic constraints can be written as deterministic constraints using
Chebyshev-Cantelli inequality [12]. For further details on this conversion, readers are referred to
[15, 13]. After this conversion and allowing slack variablesξi to handle noise leads us to the follow-
ing soft-margin SOCP optimization problem:

min
w,b,ξi

k
∑

i=1

ξi

s.t.yi(w
T µi − b) ≥ 1 − ξi + κ1σiW : ∀i = 1, · · · , k1

yi(w
T µj − b) ≥ 1 − ξj + κ2σjW : ∀j = 1, · · · , k2

W ≥ ‖w‖
2
, ξi ≥ 0 : ∀i = 1, · · · , k1 + k2

(2)

whereκi =
√

ηi

1−ηi

andW is a user-defined parameter which lower bounds the margin between the

two classes. The geometric interpretation of this formulation is that of finding a hyperplane which
separates the positive and negative spheres whose centers and radii areµi andκiσi respectively (See
Figure 1(b)). Note that if we consider each point as one cluster(σi = 0), then the above formulation
is exactly the same as SVMs. By solving the above SOCP problem, we get the optimum values of
w andb, and a new data pointx can be classified as sign(wT x − b).

This formulation is much more scalable to large datasets because the number of constraints in this
formulation is linear in the number of clusters, whereas thenumber of constraints in SVM formula-
tion is linear in the number of data points. It also allows us to introduce preferential bias by varying
η1 andη2. In the case of link formation, we want to give more importance to positive links than
negative links, i.e.,η1 > η2.

However, this cannot handle the case of unbalanced data. Onesimple way to overcome this problem
is to balance the data by constraining the number of clustersk1 andk2 i.e., k1 ≈ k2. Note that,
the assumption that mixture components have spherical covariances is a strong one. We conjecture
that considering either diagonal or full covariance matrixinstead of spherical covariances might give
better results. However, we do not pursue this direction in our current work.

2.2 Max-Margin formulation with specified lower bounds on accuracy of the two
classes(LBSOCP)

SupposeX1 andX2 represent the random variables which generate the data points from positive
and negative class respectively. In this formulation, it isassumed that the class conditional densities
can be modeled as Gaussians with meansµi ∈ ℜn andΣi ∈ ℜn×n for i = 1, 2. We also assume that
η1 andη2, the lower bounds on classification accuracies of the two classes, are given to us. The goal
here is to construct a max-margin classifier with desired lower bounds on classification accuracies.
Consider the following formulation:

min
w,b

1

2
‖w‖

2

s.t.Pr(X1 ∈ H2) ≤ 1 − η1

Pr(X2 ∈ H1) ≤ 1 − η2

X1 ∼ (µ1,Σ1),X2 ∼ (µ2,Σ2)

(3)

whereH1 andH2 denote the positive and negative half spaces respectively.The chance-constraints
Pr(X1 ∈ H2) ≤ 1 − η1 andPr(X2 ∈ H1) ≤ 1 − η2 specify that false-negative and false-positive
rate should not exceed1−η1 and1−η2 respectively. The above chance-constraints can be converted
into deterministic ones using multi-variate generalization of Chebyshev-Cantelli inequality [12, 14,
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(a) (b)

(c) (d)

Figure 1: Geometric interpretation for (a) SVM (b) CBSOCP (c) LBSOCP (d) Effect ofηi on margin

13]. After this conversion and re-writing it in standard SOCP form, we get the following formulation,

min
w,b,t

t

s.t. t ≥ ‖w‖
2

wT µ1 − b ≥ 1 + κ1

∥

∥CT
1 w

∥

∥

2

b − wT µ1 ≥ 1 + κ2

∥

∥CT
2 w

∥

∥

2

(4)

where,κi =
√

ηi

1−ηi

, andC1 andC2 are square matrices such thatΣ1 = C1C
T
1 andΣ2 = C2C

T
2 .

Note that, there exist such square matrices sinceΣ1 andΣ2 are positive semi-definite. The geo-
metrical interpretation of the above constraints is that offinding a hyperplane which separates the
positive and negative ellipsoids whose centers are atµ1 andµ2, shapes determined byC1 andC2,
and size byκ1 andκ2 respectively i.e.,B(µi, Ci, κi) =

{

x|(x − µi)
T Σ−1

i (x − µi) ≤ κ2
i

}

(see Fig-
ure 1 (c)). It is important to note that, the margin of the classifier changes for different values of
ηi (see Figure 1 (c) and Figure 1 (d)). By solving the above SOCP problem using standard SOCP
solvers like SeDuMi, we get the optimum values ofw andb, and a new data pointx can be classified
as sign(wT x − b).

This formulation has all the properties needed for the link prediction task. By varying the values of
η1 andη2, we can introduce preferential bias towards positive linksi.e.,η1 > η2. It is scalable and
can also handle unbalanced data.

3 Applications of the CCP framework

In this section, we will explain how our CCP framework can be used for a variety of applications in
network analysis without any further changes. It is important to note that, the framework is flexible
enough to be used in both the cases where positive links are more important than negative links and
vice versa. For example, in link formation we want to give more importance to positive links i.e,
η1 > η2 and in the case of anomalous link discovery we want to give more importance to negative
links i.e.,η2 > η1. We consider the applications that fall under both these categories separately and
provide generic solutions that can be used across a wide range of applications. Since we are working
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with max-margin classifiers, our solutions are based on the margin of the learned classifier which is
defined as

∣

∣wT x − b
∣

∣.

Positive links are more important: In this case, we use a validation set to determine the positive
thresholdm+, which is defined as the minimum margin above which majority of the positive links
lie. Therefore, any positive link which has a margin more than m+ will be positive with very
high probability. Now during testing, we can rank all the positive links with marginm > m+

according to their margin and such a ranked list can be used invariety of applications. For example,
to recommend friends in an online social network(OSN), items in collaborative filtering, etc.

Negative links are more important: Similar to the previous case, we use the validation set to de-
termine the negative thresholdm−, which is defined as the minimum margin above which majority
of the negative links lie. Therefore, any negative link which has a margin more thanm− will be
negative with very high probability. Now during testing, consider the set of all negative links with
marginm > m−. We can use this list of negative links for anomalous link discovery such as fraud
detection, i.e., if any of these negatively predicted linksis actually seen as a positive link, then it can
be flagged as anomalous.

Missing features: In both the above cases, we may have some features missing. For example, if
we use node attributes as features like user profiles in OSNs ,then we may find incomplete profiles
leading to missing features. And, chance-constrained programs can be used to handle this problem
as well. For more details on this, readers are referred to [18].

4 Experimental Results and Discussion

In this section, we describe our experimental setup, description of datasets, features used for learning
the classifier, evaluation methodology, followed by our results and discussion.

Datasets:We run our experiments on three real-world co-authorship networks, which are the same
as the ones used in [20]. DBLP dataset was generated using DBLP collection of computer science
articles.2 It contains all the papers from the proceedings of 28 conferences related to machine
learning, data mining and databases from 1997 to 2006. Genetics dataset contains articles published
in 14 journals related to genetics and molecular biology from 1996 to 2005. Biochemistry dataset
contains articles published in 5 journals related to biochemistry from 1996 to 2005. The genetics
and biochemistry datasets were generated from the popular PubMed database.3

Dataset No. of authors No. of papers No. of edges
DBLP 23,136 18,613 56,829
Genetics 41,846 12,074 1,64,690
Biochemistry 50,119 16,072 1,91,250

Table 1: Data Description

Experimental setup: We form the training dataset for our experiments in the same way as done
in [20], which is as follows: For each dataset we have the datafor 10 years. We consider the data
from first 9 years for training and the data from the 10th year for testing. We consider all those links
formed in the 9th year as positive training examples and among all the negative links (those links that
are not formed in the first 9 years), we randomly collect a large sample and label them as negative
training examples. Note that the features of these trainingexamples are constructed based on the
first 8 years of data. Similarly for the test set, we consider all the links that are formed during the
10th year as positive examples and collect a sample of all thenegative links as negative examples.
Note that the features of these testing examples are constructed based on the first 9 years of data.

Feature description: We used the same set of features between nodes as used in [20].Their de-
scription is as follows:Common neighbors: the number of common neighbors for the two authors
during training,Social connectivity: the total number of neighbors the two authors have during
training,Sum of papers: the number of papers the two authors have written together during training,

2http://dblp.uni-trier.de/
3http://www.ncbi.nlm.nih.gov/entrez
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Approximate Katz measure: Katz measure approximated to paths up to length 4 with discount factor
γ = 0.8 andSemantic feature: the cosine similarity between the titles of the papers written by the
two authors during training.

Evaluation: We use precision and recall metrics from Information Retrieval context for evaluation,
and compare the chance-constraints based algorithms (CBSOCP and LBSOCP) against SVMs and
perceptron with uneven margins (PAUM) [9]. We selected PAUMas a strong baseline because it
allows us to differentially emphasize the accuracies of thetwo classes based on positive and negative
margins,τ+ andτ−. We rank all the test examples according to the margin of the classifiers and
calculate precision and recall from Top-k by varying the value ofk. Here, precision is defined as
the percentage of true-positive links that were predicted correctly among the Top-k and recall is
defined as the percentage of true-positive links that were predicted correctly out of the total true-
positive links. We report the best results for SVMs by tuningits C parameter on validation set
and for CBSOCP, we useW = 1, i.e., we want a margin of at least 1 between the two classes.
For PAUM, we pick the best values forτ− from {−1.5,−1,−0.5, 0, 0.1, 0.5, 1} and forτ+ from
{−1,−0.5, 0, 0.1, 0.5, 1, 2, 5, 10, 50} based on the validation set. We ran PAUM for a maximum of
1000 iterations or until convergence. Due to space constraints, we show the precision and recall
curves for only one setting:η1 = 0.9 andη2 = 0.7. But we see the same kind of behavior for other
similar configurations ofη1 andη2 as well.

The precision and recall curves for all the 3 datasets are shown in Figure 2, Figure 3 and Figure 4.
As we can see, LBSOCP and CBSOCP significantly outperform SVMs and PAUM in both preci-
sion and recall for all the 3 datasets, except for biochemistry where PAUM performs better. Also,
LBSOCP performs better than CBSOCP as expected. We achieve arecall of 52.79% and 46.23%
using LBSOCP and CBSOCP when compared to 28.5% of SVMs and 33.59% of PAUM for DBLP
dataset, 39.28% and 22.87% when compared to 13.39% of SVMs and 7.66% of PAUM for Genet-
ics dataset, and 55.09% and 46.94% when compared to 25.48% ofSVMs and 63.37% of PAUM
for Biochemistry dataset. Encouragingly, LBSOCP and CBSOCP achieve a very good (80-90% of
their overall recall) recall within≈ Top-1000, which makes it a very good candidate for applica-
tions like recommendation and collaborative filtering where this property is very important. The
reason why SVMs fail badly here is due to highly skewed class distribution. They try to get more
negative examples correctly and in this process they find a hyperplane which has large margin for
negative examples. We can clearly observe this behavior in our results - SVMs predict majority of
its true-positives at the very end of the Top-k. With carefulparameter tuning, PAUM can perform
better in some cases (as we see with biochemistry dataset), but one cannot quantitatively relate these
parameters to the performance.

We show the training times of different learners on various datasets in Table 2. As we can see, both
CBSOCP and LBSOCP are orders of magnitude faster than SVM andPAUM, which makes them
attractive to large networks. Note that, the SVMs were trained using popular LIBSVM and time
would have been shorter if trained with SVMperf.

Learner SVM PAUM CBSOCP LBSOCP
DBLP 29.03 16.25 0.12 0.03
Genetics 265.77 27.30 2.00 0.02
Biochemistry 307.32 42.30 3.00 0.01

Table 2: Training time results (in secs)

5 Conclusions and Future Work

In this work, we showed how learning algorithms based on chance-constraints can be used to solve
link prediction problems. We showed that they significantlyimprove the prediction accuracy over
the traditional classifiers like SVMs. We explained how our framework using chance-constraints can
be used in different scenarios—where positive links are moreimportant than negative links (e.g., link
formation prediction), where negative links are more important than positive links (e.g., anomalous
link discovery) and cases in which we see a lot of missing features. In the future, we would like to
experiment with other co-authorship networks likearXiv and test this framework in other settings
like collaborative filtering, anomalous link discovery andlink prediction cases with missing features.
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We would like to extend the current framework to a relationalsetting similar to Taskar’s work [19].
However, formulating it as relational or structured prediction poses an enormous inference problem,
especially in large networks. One possible approach is to take a middle path between complete
independence and arbitrary relational structure.
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