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Goal & Challenges
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Goal:  minimize the risk of users with different purchase intents not 
seeing any relevant item.

• Capture users’ attentions so that they will stay on the eBay site.
• Improve users’ buying experience by reducing their efforts in search.

Challenges:

• eBay product taxonomy is very noisy.
• Search requires real time scoring and ranking.
• Extremely large and dynamic inventory.



Methodology
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1 Discovering user intents
Discover the hidden user intents of a query using the LDA model.

1 Ranking user intents 
Rank discovered user intents by trading off their relevance and novelty.

1 Selecting items for user intents
Find the most representative item for each user intent to display.



Discovering user intents
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• Generate the “corpus” of a query by collecting the user clicked data 
resulted from the query.
– User clicks carry the signal of a user’s purchase intent.
– Each user click specifies a particular listing on eBay.
– Use the item title of a listing since it is relatively noisy-free.

• Apply the LDA model to the query-specific “corpus”.
– The topics correspond to the hidden user intents. 



Multivariate Bernoulli LDA model
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• No duplicated terms in an item title.
• Use Multivariate Bernoulli distribution rather than Multinomial 

distribution to characterize a user intent.



Discovered user intents
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• User intents line up to categories and associate semantically 
meaningful terms with the corresponding categories.

• Further explore existing product taxonomy.
• Combine similar categories according to user demand.



Ranking user intents
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Rank all the user intents by trading off user intents’ popularity and 
information novelty. 

λ * Popularity(k)  +  ( 1 – λ ) * Novelty(k)

•Popularity(k) indicates the relevance of the kth user intent to the query.
• Novelty(k) measures the extra information the kth user intent adds onto the 

user intents already selected. 
• λ is the parameter trading off popularity and novelty.



Selecting items for user intents
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• The multivariate Bernoulli distribution of a user intent specifies 
the weight of a term within that user intent. 
• Score all the items in a user intent and select the item with the 
maximum score. 



An example of query fossil
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Evaluation metric
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Averaged Satisfaction (AS): measures the user satisfaction averaged 
across all the users w.r.t. a list of N items. 

Given a list of items, the user satisfaction is defined as the similarity 
between the clicked item and the most similar item of the list. 



Results
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• 120 queries. 
• Datasets:
– Training: 10K user clicked.
– Testing: 10K user clicked.
– Ranking: eBay inventory.
•Baselines:
– eBay production ranker
– MMR
– Category-based approach
– PLMMR
– LDA / MB-LDA  with 10 user intents
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Queries of high and low ambiguity.
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The MB-LDA model with 10 user intents vs. 20 user intents.
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