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Abstract
We derive ensembles of decision trees through
a nonparametric Bayesian model, allowing us to
view random forests as samples from a posterior
distribution. This insight provides large gains in
interpretability, and motivates a class of Bayesian
forest (BF) algorithms that yield small but reli-
able performance gains. Based on the BF frame-
work, we are able to show that high-level tree hi-
erarchy is stable in large samples. This leads to
an empirical Bayesian forest (EBF) algorithm for
building approximate BFs on massive distributed
datasets and we show that EBFs outperform sub-
sampling based alternatives by a large margin.

1. Introduction
Decision trees are a fundamental machine learning tool.
They partition the feature (input) space into regions of re-
sponse homogeneity, such that the response (output) value
associated with any point in a given partition can be pre-
dicted from the average for that of its neighbors. The classi-
fication and regression tree (CART) algorithm of (Breiman
et al., 1984) is a common recipe for building trees; it grows
greedily through a series of partitions on features, each of
which maximizes reduction in some measure of impurity at
the current tree leaves (terminal nodes; i.e., the implied in-
put space partitioning). The development of random forests
(RF) by (Breiman, 2001), which predict through the aver-
age of many CART trees fit to bootstrap data resamples,
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is an archetype for the successful strategy of tree ensemble
learning. For prediction problems with training sets that are
large relative to the number of inputs, properly trained en-
sembles of trees can predict out-of-the-box as well as any
carefully tuned, application-specific alternative.

This article makes three contributions to understanding and
application of decision tree ensembles (or, forests).

Bayesian forest: A nonparametric Bayesian (npB) point-
of-view allows interpretation of forests as a sample from a
posterior over trees. Imagine CART applied to a data gen-
erating process (DGP) with finite support: the tree greed-
ily splits support to minimize impurity of the partitioned
response distributions (terminating at some minimum-
leaf-probability threshold). We present a nonparametric
Bayesian model for DGPs based on multinomial draws
from (large) finite support, and derive the Bayesian forest
(BF) algorithm for sampling from the distribution of CART
trees implied by the posterior over DGPs. Random forests
are an approximation to this BF exact posterior sampler,
and we show in examples that BFs provide a small but re-
liable gain in predictive performance over RFs.

Posterior tree variability: Based upon this npB framework,
we derive results on the stability of CART over different
DGP realizations. We find that, conditional on the data al-
located to a given node on the sample CART tree, the prob-
ability that the next split for a posterior DGP realization
matches the observed full-sample CART split is

p (split matches sample CART) & 1− p√
n
e−n, (1)

where p is the number of possible split locations and n the
number of observations on the node. Even if p grows with
n, the result indicates that partitioning can be stable con-
ditional on the data being split. This conditioning is key:
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CART’s well known instability is due to its recursive na-
ture, such that a single split different from sample CART
at some node removes any expectation of similarity below
that node. However, for large samples, (1) implies that we
will see little variation at the top hierarchy of trees in a for-
est. We illustrate such stability in our examples.

Empirical Bayesian forests: the npB forest interpreta-
tion and tree-stability results lead us to propose empirical
Bayesian forests (EBF) as an algorithm for building ap-
proximate BFs on massive distributed datasets.Traditional
empirical Bayesian analysis fixes parameters in high levels
of a hierarchical model at their marginal posterior mode,
and quantifies uncertainty for the rest of the model con-
ditional upon these fixed estimates. EBFs work the same
way: we fit a single shallow CART trunk to the sam-
ple data, and then sample a BF ensemble of branches at
each terminal node of this trunk. The initial CART trunk
thus maps observations to their branch, and each branch
BF is fit in parallel without any communication with the
other branches. With little posterior variability about the
trunk structure, an EBF sample should look similar to the
(much more costly, or even infeasible) full BF sample. In a
number of experiments, we compare EBFs to the common
distributed-computing strategy of fitting forests to data sub-
samples and find that the EBFs lead to a large improvement
in predictive performance. This type of strategy is key to
efficient machine learning with Big Data: focus the ‘Big’
on the pieces of models that are most difficult to learn.

Bayesian forests are introduced in Section 2 along with a
survey of Bayesian tree models, Section 3 investigates tree
stability in theory and practice, and Section 4 presents the
empirical Bayesian forest framework. Throughout, we use
publicly available data on home prices in California to il-
lustrate our ideas. We also provide a variety of other data
analyses to benchmark performance, and close with de-
scription of how EBF algorithms are being built and per-
form in large-scale machine learning at eBay.com.

2. Bayesian forests
Informally, write dgp to represent the stochastic process de-
fined over a set of possible DGPs. A Bayesian analogue to
classical ‘distribution-free’ nonparametric statistical analy-
sis (e.g., Hollander & Wolfe, 1999) has two components:

1. set a nonparametric statistic T (dgp) that is of interest
in your application regardless of the true DGP,

2. and build a flexible model for the DGP, so that the
posterior distribution on T (dgp) can be derived from
posterior distribution on possible DGPs.

In the context of this article, T (dgp) refers to a CART tree.
Indeed, trees are useful precisely because they are good

predictors regardless of the underlying data distribution –
they do not rely upon distributional assumptions to share
information across training observations. Our DGP model,
detailed below, leads to a posterior for dgp that is repre-
sented through random weighting of observed support. A
Bayesian forest contains CART fits corresponding to each
draw of support weights, and the BF ensemble prediction
is an approximate posterior mean.

2.1. Nonparametric model for the DGP

We employ a Dirichlet-multinomial sampling model in
nonparametric Bayesian analysis. The approach dates back
to Ferguson (1973). Chamberlain & Imbens (2003) provide
an overview in the context of econometric problems. Rubin
(1981) proposed the Bayesian bootstrap as an algorithm for
sampling from versions of the implied posterior, and it has
since become closely associated with this model.

Use zi = {xi, yi} to denote the features and response for
observation i. We suppose that data are drawn indepen-
dently from a finite L possible values,

dgp = p(z) =

L∑
l=1

ωl1[z=ζl]
(2)

where ωl ≥ 0∀l and
∑
l ωl = 1. Thus the generat-

ing process for observation i draws li from a multinomial
with probability ωli , and this indexes one of the L support
points. Since L can be arbitrarily large, this so-far implies
no restrictive assumptions beyond that of independence.

The conjugate prior forω is a Dirichlet distribution, written
Dir(ω;ν) ∝

∏L
l=1 ω

νl−1
j . We will parametrize the prior

with a single concentration parameter ν = a > 0, such that
E[ωl] = a/La = 1/L and var(ωl) = (L−1)/[L2(La+1)].
Suppose you have the observed sample Z = [z1 · · · zn]′.
For convenience, we allow ζl = ζk for l 6= k in the case
of repeated values. Write l1 . . . ln = 1 . . . n so that zi = ζi
and Z = [ζ1 · · · ζn]′. Then the posterior distribution for ω
has ωi = a+ 1 for i ≤ n and ωl = a for l > n, so that

p(ω) ∝
n∏
i=1

ωai

L∏
l=n+1

ωa−1l . (3)

This, in turn, defines our posterior for the data generating
process through our sampling model in (2).

There are many possible strategies for specification of a
and ζl for l > n.1 The non-informative prior that arises
as a → 0 is a convenient default: in this limit, ωl = 0
with probability one for l > n.2 We apply this limiting

1The unobserved ζl act as data we imagine we might have
seen, to smooth the posterior away from the data we have actually
observed. See Poirier (2011) for discussion.

2For l > n the posterior has E[ωl] = 0 with variance
var(ωl) = lima→0 a[n+a(L−1)]/[(n+La)2(n+La+1)] = 0.
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Figure 1. Motorcycle data illustration. The lines show each of CART fit to the data sample, CART fit to a sample with weights drawn
IID from an exponential (point size proportional to weight), and the BF predictor which averages over 100 weighted CART fits.

prior throughout, such that our posterior for the data gen-
erating process is a multinomial draw from the observed
data points, with a uniform Dir(1) distribution on the ω =
[ω1 . . . ωn]′ sampling probabilities. We will also find it con-
venient to parametrize un-normalized ω via IID exponen-
tial random variables: θ = [θ1 . . . θn], where θi

ind∼ Exp(1)
in the posterior and ωi = θi/|θ| with |θ| =

∑
i θi.

2.2. CART as posterior functional

Conditional upon θ, the population tree T (dgp) is defined
through a weighted-sample CART fit. In particular, given
data Zη = {Xη,yη} in node η, sort through all dimensions
of all observations in Zη to find the split that minimizes
the average of some ω-weighted impurity metric across the
two new child nodes. For example, in the case of regression
trees, the impurity to minimize is weighted-squared error

I(yη) =
∑
i∈η

θi(yi − µη)2 (4)

with µη =
∑
i θiyi/|θ

η|. For our classification trees, we
minimize Gini impurity. The split candidates are restricted
to satisfy a minimum leaf probability, such that every node
in the tree must have |θη| greater than some threshold.3

This procedure is repeated on every currently-terminal tree
node until it is no longer possible to split while satisfying
the minimum probability threshold. To simplify notation,
we refer to the resulting CART tree as T (θ).

2.3. Posterior sampling

Following (Rubin, 1981) we can sample from the posterior
on T (θ) via the Bayesian bootstrap in Algorithm 1.

We’ve implemented BF through simple adjustment of the
ensemble module of python’s scikit-learn (Pe-

3In practice this can be replaced with a threshold on the mini-
mum number of observations at each leaf.

Algorithm 1 Bayesian Forest
for b = 1 to B do

draw θb iid∼ Exp(1)
run weighted-sample CART to get Tb = T (θb)

end for

dregosa et al., 2011).4 As a quick illustration, Figure 1
shows three fits for the conditional mean velocity of a mo-
torcyle helmet after impact in a crash: sample CART T (1),
a single draw of T (θ), and the BF average prediction (data
are from the MASS R package, Venables & Ripley, 2002).

Note that the Bayesian forest differs from Breiman’s ran-
dom forest only in that the weights are drawn from an expo-
nential (or Dirichlet, when normalized) distribution rather
than a Poisson (or multinomial) distribution. To the ex-
tent that RF sampling provides a coarse approximation to
the BF samples, the former is a convenient approximation.
Moreover, we will find little difference in predictive perfor-
mance between BFs and RFs, so that one should feel free
to use readily available RF software while still relying on
the ideas of this paper for intuition and interpretation.

2.4. Bayesian tree-as-parameter models

Other Bayesian analyses of DTs treat the tree as a parame-
ter which governs the DGP, rather than a functional thereof,
and thus place some set of restrictions on the distributional
relationship between inputs and outputs.

The original Bayesian tree model is the Bayesian CART
(BCART) of Chipman et al. (1998). BCART defines a like-
lihood where response values for observations allocated
(via x) to the same leaf node are IID from some para-
metric family (e.g., for regression trees, observations in

4Replace variable sample counts in forest.py to be
drawn exponential rather than multinomial when bootstrapping.
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each leaf are IID Gaussian with shared variance and mean).
The BCART authors also propose linear regression leaves,
while the Treed Gaussian Processes of Gramacy & Lee
(2008) use Gaussian process regression at each leaf. The
models are fit via Markov chain Monte Carlo (above ex-
amples) or sequential Monte Carlo (Taddy et al., 2011) al-
gorithms that draw from the posterior by proposing small
changes to the tree (e.g., grow or prune).5

Monte Carlo tree sampling use the same incremental moves
that employed in CART. Unfortunately, this means that
they tend to get stuck in locally-optimal regions of tree-
space. Bayesian Additive Regression Trees (BART; Chip-
man et al., 2010) replace a single tree with the sum of many
small trees. An input vector is allocated to a leaf in each
tree, and the corresponding response distribution has mean
equal to the average of each leaf node value and variance
shared across observations. Original BART has Gaussian
errors, and extensions include Gaussian mixtures. Since
BART only samples short trees, it is fast and mixes well.

Easy sampling comes at a potentially steep price: the as-
sumption of homoskedastic additive errors.6 Despite this
restriction, empirical studies have repeatedly shown BART
to outperform alternative flexible prediction rules. Many
response variables (especially after, say, log transforma-
tion) have the property that they are well fit by flexible re-
gression with homoskedastic errors. Whenever the model
assumptions in BART are close enough to true, it should
outperform methods which do not make those assumptions.

In contrast, the npB interpretation of forests (BF or RF)
makes it clear that they are suited to applications where
the response distribution defies parametric representation,
such that CART fit is the most useful DGP summary avail-
able. We often encounter this situation in application. For
example, internet transaction data combines discrete point
masses with an incredibly fat right tail (e.g., see Taddy
et al., 2014). In academia it is common to transform such
data before analysis, but businesses wish to target the re-
sponse on the scale measured (e.g., clicks or dollars) and
need to build a predictor that does well on that scale.

2.5. Friedman example

A common simulation experiment in evaluating flexible
predictors is based around the Friedman (1991) function,

y = f(x) + ε (5)

= 10sin(πx1x2) + 20(x3 − 0.5)2 + 10x4 + 5x5 + ε.

where ε ∼ N(0, 1) and xj ∼ U(0, 1).

5The Bayesian bootstrap is also a potential sampling tool in
this tree-as-parameter setting. See Clyde & Lee (2001) for details
on the technique and its relation to model averaging.

6For classification, this is manifest through a probit link.
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Figure 2. Friedman experiment predictive RMSE over 100 runs.

For our experiment, we follow previous authors by includ-
ing as features for training the spurious x6 . . . xp. Each re-
gression models are fit to 100 random draws from (5) and
tested at 1000 new x locations. Root mean square error
(RMSE) is calculated between predicted and true f(x).

Results over 100 repeats are shown in Figure 2.7 As fore-
cast, the only model which assumes the true homoskedas-
tic error structure, BART, well outperforms all others. The
two forests, BF and RF, are both a large improvement over
DT. The BF average RMSE is only about 1% better than
the RF’s, since Bayesian and classical bootstrapping dif-
fer little in practice. BCART does very poorly: worse than
a single DT. We hypothesis that this is due to the notori-
ously poor mixing of the BCART MCMC, such that this fit
is neither finding a posterior mean (as it is intended to) or
optimizing to a local posterior mode (as DT does).

We also include the extremely randomized trees (ET) of
Geurts et al. (2006), which are similar to RFs except that (a)
instead of optimizing greedy splits, a few candidate splits
are chosen randomly and the best is used and (b) the full
unweighted data sample is used to fit each tree. ET slightly
outperforms both BF and RF; in our experience this hap-
pens in small datasets where the restriction of population
support to observed support (as assumed in our npB analy-
sis) is invalid and the forest posteriors are over-fit.

2.6. California housing data

As more realistic example, we consider the California
housing data of Pace & Barry (1997) consisting of median
home price along with eight features (location, income,
housing stock) for 20640 census blocks. Since prices tend

7In this and the next example, CART-based algorithms had
minimum-leaf-samples set at 3 and the ensembles contain 100
trees. BART and BCART run at their bayestree and tgp R
package defaults, except that BART draws only 200 trees after a
burn-in of 100 MCMC iterations. This is done to get comparable
compute times; for these settings BART requires around 75 sec-
onds per fold with the California housing data, compared to BF’s
10 seconds when run in serial, and 3 seconds running on 4 cores.
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Figure 3. California housing data. The response sample is on the left, and the right panel shows predictive RMSE across 10-fold CV.

BF RF EBF ET SSF BART DT

RMSE 48.2 48.5 49.4 52.5 53.1 54.8 65.6
%WTB 0.0 0.5 2.4 8.7 10.0 13.4 35.9

Table 1. Average RMSE in $10k and % worse-than-best for the
California housing data 10-fold CV experiment.

to vary with covariates on a multiplicative scale, standard
analyses take log median price as the response of interest.
Instead, we will model the conditional expectation of dol-
lar median price. This is relevant to applications where
prediction of raw transaction data is of primary interest.
The marginal response distribution for median home price
is shown in the left panel of Figure 3.8

Figure 3 shows results from a 10-fold cross-validation (CV)
experiment, with details in Table 1. Except for DT and
BCART, which still perform worse than all others9, re-
sults are reversed from those for the small-sample and ho-
moskedastic Friedman data. Both RF and BF do much bet-
ter than BART and it’s restrictive error model. BF again
offers a small gain over RF. Since the larger sample size
makes observed support a better approximation to popula-
tion support, the forests outperform ET. The EBF (empiri-
cal Bayesian forest) and SSF (sub-sample forest) predictors
are based on distributed computing algorithms that we in-
troduce later in Section 3. At this point we note only that
the massively scalable EBF is amongst the top performers;
the next section helps explain why.

3. Understanding the posterior over trees
Theory on decision trees is sparse. The original CART
book of Breiman et al. (1984) provides consistency results;
they show that any partitioner that is able to learn enough

8Values appear to have been capped at $500k
9We’ve left off BCART’s average RMSE of $82k, 70% WTB.

to split the DGP support into very low probability leaves
will be able to reproduce the conditional response distribu-
tion of that DGP. However, this result says nothing about
the structure of the underlying trees, nor does it say any-
thing about the ability of a tree to predict when there is not
enough data to finely partition the DGP. Others have fo-
cused on the frequentist properties of individual split deci-
sions. In the CHAID work of Kass (1980), splits are based
upon χ2 tests at each leaf node. Loh (2002) and Hothorn
et al. (2006) are generalizations, both of which combat
multiple testing and other biases inherent in tree-building
through a sequence of hypothesis tests. However, such con-
tributions provide little intuition in the setting where we are
not working from a no-split null hypothesis distribution.

Despite this lack of theory, it is generally thought that there
is large uncertainty (sampling or posterior) about the struc-
ture of decision trees. For example, Geurts & Wehenkel
(2000) present extensive simulation of tree uncertainty and
find that the location and order of splits is often no-better
than random (this motivates work by the same authors on
extremely randomized trees). The intuition behind such
randomness is clear: the probability of a tree having any
given branch structure is the product of conditional proba-
bilities for each successive split. After enough steps, any
specific tree approaches probability of zero.

However, it is possible that elements of the tree structure
are stable. For example, in the context of boosting, Appel
et al. (2013) argue that the conditionally optimal split loca-
tions for internal nodes can be learned from subsets of the
full data allocated to each node. They use this to propose a
faster boosting algorithm. In this section we make a related
claim: in large samples, there is little posterior variation for
the top of the tree. We make the point first in theory, then
through empirical demonstration.
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3.1. Probability of the sample CART tree

We focus on regression trees for this derivation, wherein
node impurity is measured as the sum of squared errors.
Consider a simplified setup with each xj ∈ {0, 1} a binary
random variable (possibly created through discretization of
a continuous input). We’ll investigate here the probability
that the impurity minimizing split on a given node is the
same for a given realization of posterior DGP weights as it
is for the unweighted data sample.

Suppose {z1 . . . zn} are the data to be partitioned at some
tree node, with zi = [yi, xi1, . . . , xip]

′. Say that fj = {i :
xij = 0} and tj = {i : xij = 1} are the partitions implied
by splitting on a given xj . The resulting impurity is

σ2
j (θ) =

1

n

∑
i

θi [yi − µj(xij)]2 , (6)

µj(0) =
∑
i∈fj

yi θi/
∣∣θfj

∣∣, µj(1) =
∑
i∈tj

yi θi/
∣∣θtj

∣∣.
We could use the Bayesian bootstrap to simulate the pos-
terior for σj implied by the exponential posterior on θ, but
an analytic expression is not available. Instead, we follow
the approach used in Lancaster (2003), Poirier (2011), and
Taddy et al. (2014): derive a first-order Taylor approxima-
tion to the function σj and describe the posterior for that
related functional.

In particular, the 1× n gradient of σj with respect to θ is

∇σ2
j = ∇ 1

n

[∑
i

θiy
2
i −

1

|θf|
(y′fθf)

2 − 1

|θt|
(y′tθt)

2

]
(7)

which has elements∇iσ2
j = (yi − µ(xij))

2
/n

The Taylor approximation is then

σ2
j ≈ σ̃2

j = σ2
j (1) +∇σ2

∣∣
θ=1

(θ − 1)

=
1

n

∑
i

θi (yi − ȳj(xij))2 (8)

with ȳj(0) = 1
nfj

∑
i∈fj

yi and ȳj(1) = 1
ntj

∑
i∈tj

yi the
observed response averages in each partition.

Suppose that σ1(1) < σj(1) ∀j, so that variable ‘1’ is that
selected for splitting based on the unweighted data sam-
ple. Then we can quantify variability about this selection
by looking at differences in approximate impurity,

∆j(θ) = σ̃2
1 − σ̃2

j (9)

=
1

n

∑
i

θi
[
ȳ21(xi1)− ȳ2j (xij)−

2yi (ȳ1(xi1)− ȳj(xij))
]

≡ 1

n

∑
i

θidji.

Say dj = [dj1 . . . djn]′ is the vector of squared error dif-
ferences. Then the total difference has mean E∆j = d̄j
and variance var∆j = d′jdj/n

2. Since ∆j is the mean
of independent Exponential random variables with known
means and variances, the central limit theorem applies and
it converges in distribution to a Gaussian:

√
n(∆j(θ)− d̄j) N(0, d′jdj/n). (10)

The weighted-sample impurity-minimizing split matches
that for the unweighted-sample if and only if all ∆j are
negative, which occurs with probability (note d̄j < 0)

p (∆j < 0 : j = 2 . . . p) ≥ 1−
p∑
j=2

p(∆j > 0) (11)

 1−
p∑
j=2

Φ

− √n ∣∣d̄j∣∣√
d′jdj/n


≥ 1− 1√

2π

p∑
j=2

exp(−nz2j /2)

zj
√
n

where zj =
∣∣d̄j∣∣ (d′jdj/n)− 1

2 is sample mean increase in
impurity over the sample standard deviation of impurity.
This ratio is bounded in probability, so that that the expo-
nential bound goes to zero very quickly with n. In par-
ticular, ignoring variation in zj across variables, we arrive
at the approximate lower bound on the probability of the
sample split

p (posterior split matches sample split) & 1− p√
n
e−n.

Even allowing for p ≈ n × d, with d some underlying
continuous variable dimension and p the input dimension
discretization on these variables, the probability of the ob-
served split goes to one at order O(n−1) if d < en/n3/2.

Given this, why is there any uncertainty at all about trees?
The answer is recursion: each split is conditionally stable
given the sample at the current node, but the probability
of any specific sequence of splits is roughly (we don’t ac-
tually have independence) the product of individual node
split probabilities. This will get small as we move deeper
down the tree, and given one split different from the sam-
ple CART the rest of the tree will grow arbitrarily far from
this modal structure. In addition, the sample size going into
our probability bounds is shrinking exponentially with each
partition, whereas the dimension of eligible split variables
is reduced only by one at each level.

Regardless of overall tree variability, we can take from this
section an expectation that for large samples the high-level
tree structure varies little across posterior DGP realizations.
The next section shows this to be the case in practice.
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Figure 4. California housing data. The left shows the CART fit on unweighted data with a minimum of 3500 samples-per-leaf. The right
panel shows the distribution of first and second split locations – always on median income – across 100 draws from the BF posterior.

3.2. Trunk stability in California

We’ll illustrate the stability of high-level tree structure on
our California housing data. Consider a ‘trunk’ DT fit to the
unweighted data with no less than 3500 census blocks (out
of 20640 total) in each leaf partition. This leads to the tree
on the left of Figure 4 with five terminal nodes. It splits on
the obvious variable of median income, and also manages
to divide California into its north and south regions (34.455
degrees north is just north of Santa Barbara).

To investigate tree uncertainty, we can apply the BF algo-
rithm and repeatedly fit similar CART trees to randomly-
weighted data. Running a 100 tree BF, we find that the
sample tree occurs 62% of the time. The second most com-
mon tree, occurring 28% of the time, differs only in that it
splits on median income again instead of on housing me-
dian age. Thus 90% of the posterior weight is on trees that
split on income twice, and then latitude. Moreover, a strik-
ing 100% of trees have first two splits on median income.
From this, we can produce the plot in the right panel of Fig-
ure 4 showing the locations of these first two splits: each
split-location posterior is tightly concentrated around the
corresponding sample CART split.

4. Empirical Bayesian forests
Empirical Bayes (EB) is an established framework with a
successful track record in fast approximate Bayesian infer-
ence; see, e.g., Efron (2010) for an overview. In parametric
models, EB can be interpreted as fixing at their marginal
posterior maximum the parameters at higher levels of a
hierarchical model. For example, in the simple setting of
many group means (the average student test score for each
of many schools) shrunk to a global center (the outcome
for an imaginary ‘average school’), an EB procedure will
shrink each group mean toward the overall sample average
(each school towards all-student average). Kass & Steffey

(1989) investigate such procedures and show that, under
fairly general conditions, the EB conditional posterior for
each group mean quickly approaches the fully Bayesian un-
conditional posterior as the sample size grows. This occurs
because there is little uncertainty about the global mean.

CART trees are not a parametric model, but they are hierar-
chical and admit an interpretation similar to those studied in
Kass & Steffey (1989). The data which reaches any given
interior node is a function of the partitioning implied by
nodes shallower in the tree. Moreover, due to the greedy
algorithm through which CART grows, a given shallow
trunk is unaffected by changes to the tree structure below.
Finally, Section 3 demonstrated that, like high levels in a
parametric hierarchical model, there is relatively little un-
certainty about high levels of the tree.

An empirical Bayesian forest (EBF) takes advantage of this
structure by fixing the highest levels in the hierarchy – the
earliest CART splits – at a single estimate of high poste-
rior probability.10 We fit a single shallow CART trunk to
the unweighted sample data, and sample a BF ensemble of
branches at each terminal node of this trunk. The initial
CART trunk maps observations to their branch, and each
branch BF deals with a dataset of manageable size and can
be fit in parallel without any communication with the other
branches. That is, EBF replaces the BF posterior sample of
trees with a conditional posterior sample that takes the pre-
fit trunk as fixed. Since the trunk has relatively low vari-
ance for large samples (precisely the setting where such
distribution is desirable), the EBF should provide predic-
tions similar to that of the full BF at a fraction of the cost.

In contrast, consider the ‘sub-sample forest’ (SSF) al-
gorithm, which replaces the full data with random sub-
samples of manageable size. Independent forests are fit

10These earliest splits – requiring impurity search over large
observation sets – are also the most expensive to optimzie.
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Figure 5. Wine Data: 10-fold OOS prediction experiment Root
Mean Square Error and % Worse than Best for the mean RMSE.

to each sub-sample and predictions are averaged across all
forests. SSF is a commonly applied strategy (e.g., see men-
tion, but not recommendation, of it in Panda et al., 2009),
but it implies using only partial data for learning deep tree
structure. Although the tree trunks are stable, the full tree
is highly uncertain and learning such structure is precisely
where you want to use a full Big Data sample.

4.1. Out-of-sample experiments

In the California housing experiment of Figure 3 and Table
1, EBF11 predictions are only 2% worse than those from
the full BF. In contrast, SSF predictions are 10% worse.

We consider two additional prediction problems. The first
example, taken from (Cortez et al., 1998), involves predic-
tion of an ‘expert’ quality ranking on the scale of 0-10 for
wine based upon 11 continuous attributes (physiochemi-
cal properties of the wine) plus wine color (red or white).
There are 4898 observations. Results are in Figure 5: EBF
is only 1% worse than the full BF, while SSF is 12% worse.

The second example is from the Nielson Consumer Panel
data, available for academic research through the Kilts
Center at Chicago Booth, and our sample contains 73,128
purchases of light beer in a number of US markets during
2004. The response of interest is brand choice, of a possible
five major light beer labels: Budweiser, Miller, Coors, Nat-
ural, and Busch. Each purchase is associated with a house-
hold that is codified through 16 standard demographic cat-
egorical variables (maximum age, total income, main occu-
pation, etc). Applying classification forests and DTs (based
on Gini impurity) leads to the results in Figure 6: EBF is
only 4.4% worse than the BF, while SSF is 38% worse.

4.2. Choosing the trunk depth

From the distributed computing perspective which moti-
vates this work, you should fix the trunk only as deep as
you must. In our full scale applications (next section), this

11EBFs use five node trunks in this Section. The SSFs are fit
on data split into five equally sized subsets.
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Figure 6. Beer Data: 10-fold OOS prediction experiment Miss-
Classification Rate and % Worse than Best for the average MCR.

means setting branch size so that the working memory re-
quired to fit a forest at each branch is slightly less than the
memory available on each machine.

This leaves open questions, e.g., on the trade-off between
number of trees in the forest and depth of the trunk. We
don’t yet have rigorous answers, but the npB framework
can help in further investigation. In the interim, Table 2
shows the effect on OOS error from doubling and halving
the minimum leaf size for the EBFs in our three examples.

CA housing Wine Beer

MLS 103 6 3 1.5 2 1 0.5 20 10 5
% WTB 1.6 2.4 4.3 0.3 0.8 2.2 1.0 4.4 7.6

Table 2. % Worse than Best on OOS error for different minimum
leaf sizes (MLS) specified in thousands of observations.

5. Scaling for Big Data
To close, we note that this work is motivated by the need
for reliable forest fitting algorithms that can be deployed
on millions or hundreds of millions of observations, as en-
countered when analyzing internet commerce data. A num-
ber of additional engineering details are required for such
deployment, but the basic approach is straightforward: an
initial trunk is fit (possibly to a data subset)12, and this trunk
acts as a sorting function to map observations to separate
locations corresponding to each branch. Forests are then fit
at each location (machine) for each branch.

Preliminary work at eBay.com applies EBFs for prediction
of ‘Bad Buyer Experiences’ (e.g. complaints, returns, or
shipping problems) on the site. Training on a relatively
small sample of 12 million transactions, the EBF algorithm
using 32 branch chunks is able to provide a 1.3% drop in
misclassification over the SSF alternatives. This amounts
to more than 20,000 extra detected BBE occurrences over
the short sample window, potentially giving eBay the op-
portunity to try and stop them before they occur.

12Note that the original CART trunk can itself be fit in distribu-
tion, e.g. using the MLLib library for Apache Spark.
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