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Abstract 

In this paper we describe eBird, a citizen-science project that 
takes advantage of the human observational capacity to identify 
birds to species, which is then used to accurately represent 
patterns of bird occurrences across broad spatial and temporal 
extents. eBird employs artificial intelligence techniques such as 
machine learning to improve data quality by taking advantage of 
the synergies between human computation and mechanical 
computation. We call this a Human/Computer Learning Network, 
whose core is an active learning feedback loop between humans 
and machines that dramatically improves the quality of both, and 
thereby continually improves the effectiveness of the network as 
a whole. In this paper we explore how Human/Computer 
Learning Networks can leverage the contributions of a broad 
recruitment of human observers and processes their contributed 
data with Artificial Intelligence algorithms leading to a 
computational power that far exceeds the sum of the individual 
parts.  
 

 
Introduction   

 
 The transformational power of todays computing, 
together with information and communication 
technologies, are providing new opportunities to engage 
the public to participate in and contribute to a myriad of 
scientific, business and technical challenges. For example, 
citizen-science projects such as Galaxy Zoo, eBird, and 
FoldIt demonstrate the power of crowdsourcing for 
investigating large-scale scientific problems. These and 
similar projects leverage emerging techniques that 
integrate the speed and scalability of mechanical 
computation, using advances in Artificial Intelligence (AI), 
with the real intelligence of human computation to solve 
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computational problems that are beyond the scope of 
existing algorithms [1]. 
 Human computational systems use the innate abilities of 
humans to solve certain problems that computers cannot 
solve [2].  Now the World Wide Web and wireless 
handheld devises provide the opportunity to engage large 
numbers of humans to solve these problems. For example, 
engagement can be game-based such as FoldIt, which 
attempts to predict the structure of a protein by taking 
advantage of humans’ puzzle solving abilities [3]; or 
Galaxy Zoo, which has engaged more than 200,000 
participants to classify more than 100 million galaxies [4]. 
Alternatively, the Web can be used to engage large 
numbers of participants to actively collect data and submit 
it to central data repositories. Projects such as eBird, 
engage a global network of volunteers to report bird 
observations that are used to generate extremely accurate 
estimates of species distributions [5].  
 Now systems are being developed that employ both 
human and mechanical computation to solve complex 
problems through active learning and feedback. These 
Human/Computer Learning Networks (HCLN) can 
leverage the contributions of broad recruitment of human 
observers and process their contributed data with AI 
algorithms for a resulting total computational power far 
exceeding the sum of their individual parts. This 
combination can be deployed in a variety of domains and 
holds enormous potential to solve complex computational 
problems. 
 A key factor in the power of an HCLN is the manner in 
which the benefits of active learning are cyclically fed 
back among the human participants and computational 
systems. We use “active learning” in both of its commonly 
used senses: the machine learning sense as a form of 
iterative supervised learning, and the human sense in 
which learners (our volunteers) are actively and 



dynamically guided to new levels of expertise.  The role of 
active learning in a HCLN is illustrated in Figure 1. In our  
example, broad networks of volunteers act as intelligent 
and trainable sensors to gather observations.  AI processes 
dramatically improve the quality of the observational data 
that volunteers provide by filtering inputs based on 
aggregated historical data and observers’ expertise.  By 
guiding observers with immediate feedback on observation 
accuracy AI processes contribute to advancing observer 
expertise. Simultaneously, as observer data quality 
improves, the training data on which the AI processes 
make their decisions also improves. This feedback loop 
increases the accuracy of the analysis, which enhances the 
general utility of the data for scientific purposes. 
 A successful HCLN must be able to address the 4 
following challenges. First, a task must be identified that 
human computational systems can complete but 
mechanical computational systems cannot [1]. Second, the 
task must be sufficiently straightforward and incentivized 
to maximize participation [6]. Third, the complimentary 
abilities of both humans and machines must be clearly 
identified so that they can be leveraged to increase the 
accuracy and efficiency of the network [7]. Finally novel 
methods for extracting biological insights from the noisy 
and complex data provided by multiple human computers 
must be employed [8]. In this paper we use our experience 
with eBird as a model to address these 4 HCLN challenges.  

Challenge 1: Species Identification 
Few mechanical computational systems have been 
developed to classify organisms to the species level. Those 
that do exist typically can only identify a single or small 
group of species, and cannot classify a multitude of 
organisms. Only human observers can reliably identify 
organisms to the species level [9], and are capable of 
classifying hundreds of species. This is because identifying 
a species is a complex task that relies on a combination of 
factors. First, observers must be able to process 
impressions of shape, size, and behavior under variable 
observation conditions. As this process continues, the 

observer must combine these impressions with a mental list 
of species most likely to occur at that specific location and 
date until the species is correctly identified. 
 eBird (http://ebird.org) [5] is a citizen science project 
that engages a global network of bird watchers to identify 
birds to species and report their observations to a 
centralized database. Anyone can submit observations of 
birds to eBird via the web or wireless handheld devices 
(e.g. iPhone and Android). To date more than 91,000 
individuals have volunteered more than 4 million hours 
and collected over 100 million bird observations; arguably 
the largest biodiversity data collection project in existence. 
These amassed observations provide researchers, scientists, 
students, educators, and amateur naturalists with data about 
bird distribution and abundance across varying spatio-
temporal extents.  Dynamic and interactive maps, graphs 
and other visualizations are available on the eBird website, 
and all data are readily accessible through the Avian 
Knowledge Network [10]. Since 2006 eBird data have 
been the used inr more than 60 peer-reviewed publications 
and reports, from highlighting the importance of public 
lands in conservation [11], to studies of evolution [12], 
climate change [13] and biogeography [14].  

Challenge 2: Maximizing Participation 
eBird uses crowdsourcing techniques to engage a large 
numbers of people to perform tasks that automated sensors 
and computers cannot readily accomplish [15]. This is 
accomplished through the development of straightforward 
rules for participation and incentives for contributing. 
Initially, the incentive for participating in eBird was to help 
scientists study birds, which led to very disappointing 
participation in eBird. Recognizing this, project managers 
changed the emphasis of the project from having birders 
help scientists, to tools that appealed to the birding 
community. New features were developed for eBird that 
allowed participants to: (i) keep track of their bird records; 
(ii) sort their personal bird lists by date and region; (iii) 
share their lists with others; and (iv) visualize their 
observations on maps and graphs. By providing these 

Figure 1. An HCLN example. Human observers and AI processes synergistically improve the overall quality of the entire system. 
Additionally, AI is used to generate analyses. These analyses also improve as the quantity and quality of the incoming data improves. 



record-keeping, exploration, and visualization facilities as 
a direct reward for participation eBird participation has 
grown exponentially (Figure 2). eBird appeals to the 
competitiveness of participants, and through the further 
development of eBird more interactive and varied tools 
allowed participants to determine their relative status 
compared to other participants (e.g. numbers of species 
seen) and geographical regions (e.g. checklists submitted 
per state and province).  Thus, by changing the emphasis of 
eBird to one that supports the needs and desires of the 
birding community, growth in eBird has been exponential 
(Figure 2). For example, more data were gathered in May 
2012, than during the first 3 years of the project.   
 

Figure 2. The number of observations submitted monthly to eBird 
since its inception in late 2003. Tools to better engage the bird 
watching community were released in mid-2005. Note the annual 
peaks of submission, which occur each May, when spring 
migration is at its peak and birders are most active. 
 
 An additional key component of eBird’s success has 
been the implementation of a sound data management 
strategy, which reduces the risk of data loss and allows for 
efficient use and re-use of the data.  All eBird data contain 
the following information: observer identification, 
location, visit, and what was collected.  These data form 
the core observational data model [16] and provide the 
opportunity for integration, visualization, experimentation 
and analysis.  For example, eBird collects the name and 
contact information for every observer, which allows each 
observation to be attributed to a specific person.  Location 
data such as the site name the coordinates where the 
observations were made and the geographic area 
represented by the location are stored with every visit to 
that location. Information about a specific visit consists of 
data and time of visit, amount of effort expended, such as 
distance traveled, time spent and area covered, and whether 

or not all species observed were reported. Species 
observations consist of a checklist of birds observed and 
how many individuals of each species were counted.  

Challenge 3: Identifying the Synergies  
Between Humans and Machines 

While eBird is has been successful in engaging a large 
community of volunteers to contribute large quantities of 
observations of birds, there are many challenges to using 
eBird data for analysis. First, observers are bound to 
misidentify birds, which is the largest source of error in the 
eBird database. Second, there is much variability in a 
participant’s ability to identify birds, with some eBird 
contributors being experts in bird identification, while 
others are novices. Third, participation in eBird is not 
uniformly distributed in space; most eBird observations 
occur in regions where human population densities are 
fairly high. Improving eBird data quality is a constant and 
major effort. This is because as data quality improves the 
accuracy in estimating patterns of bird occurrence also 
improves. In this section we describe how the 
implementation of HCLN processes allow us address these 
3 data quality issues.   
 

How can we efficiently filter erroneous data 
before data enter the database? 

Data quality is a major issue for eBird, particularly as 
it pertains to an observer’s ability to correctly identify 
birds to the species level. While eBird has motivated tens 
of thousands of volunteers to collect large amounts of data 
at relatively little cost, the misidentification of birds is a 
major concern. Since its inception eBird has employed a 
data validation system that relied heavily on a network of 
volunteers who were experts in the patterns of bird 
occurrence. However, beginning in 2010, the sheer volume 
of data being gathered had overwhelmed the volunteer 
network of record reviewers. Initially records had been 
filtered regionally (i.e., country, state, county), and 
temporally at the monthly scale. The basic filter 
mechanism assigned a specific region with a value for a 
given month, which corresponded to an expert’s opinion 
for a maximum allowable count for a given region. If a 
submission exceeded the maximum allowable amount, it 
was “flagged” for review by one of more than 450 
volunteer reviewers. Reviewers contacted those individuals 
who submitted flagged records to obtain additional 
information, such as field notes or photographs, in order to 
confirm unusual reports. In 2010, 4% or 720,000 of the 23 
million records submitted to eBird were reviewed. This 
number put a severe strain on the volunteer network, with 
many reviewers complaining they were overwhelmed from 
the sheer volume of records to review.  



Figure 3. Frequency of occurrence results for Black-billed 
Cuckoos (Coccyzus erythropthalmus) in upstate New York. The 
Y-axis is the frequency of eBird checklists that reported this 
species, and the X-axis is the date. Cuckoos arrive in early May 
and are detected at high frequencies because they are conspicuous 
and vocal during their mating season. But after they lay eggs, 
their detection probability drops dramatically. Most birds leave 
by mid-August. 

 
In order to decrease the volume of data that needed to be 

reviewed by the experts, we have implemented a new data 
quality filter and screening process that automates much of 
the review process. One of the most powerful calculations 
performed on eBird data is the frequency in which a 
particular bird species was reported during a particular 
period of time (Figure 3). Since each observation contains 
details of where and when a bird was detected, we can 
estimate the “likelihood” of observing a specific species at 
any spatial level (e.g., country, state, county, backyard, or 
any spatial extent of interest) and for any date. Frequency 
filters delineate when a species can be reported in a region 
and determines the validity of an observation.  

 The eBird database currently holds more than 100 
million bird observations. These historical records can be 
used to filter unusual observations that require review, but 
allow entry of expected species within the expected times 
when species should occur. These filters automatically 
emerge from historic eBird data. We have set the emergent 
filter at 10% of maximum annual frequency of occurrence 
for every species across the United States. This provides a 
consistent limit that allows expected observations through 
the filter but flags for review unusual records. For 
example, if a common species reaches a maximum 
frequency of 68% then the filter would identify the day 
when the filter first crosses the 6.8% threshold. Any record 
submitted on a date either prior or after the threshold limit, 
is flagged for review. Similarly, if a rare species reaches an 
annual peak of 6.5% frequency, the threshold limit would 

be .65%. Table 1 shows the number of flagged records the 
emergent filter identifies for 2 counties in New York State, 
Jefferson Co. and Tompkins Co (Table 1). These 2 
counties were selected because Jefferson Co. has relatively 
sparse year-round data coverage, while Tompkins Co. is 
one of the most active regions in eBird.  

When the emergent filter is triggered the submitter gets 
immediate feedback indicating that this was an unusual 
observation (Figure 1). If they confirm they made the 
observation, their record is flagged for review, and one of 
the volunteer experts will review the observation. All 
records, their flags and their review history are retained in 
the eBird database. 

What is most significant about the emergent filter 
process is that it identifies key periods during a bird’s life 
history when their patterns of occurrence change (e.g. 
during periods of migration when the bird either arrives or 
departs a specific region). Figure 4 shows those records 
that are flagged for review by the emergent filter for the 2 
New York Counties. The Chipping Sparrow (Spizella 
passerina) is a common breeding bird in upstate New 
York, but departs the region in the fall and rarely occurs in 
winter. The emergent filter for each county is different, due 
to the variation in each county’s respective historic data. 
The triangles and circles are all records that are flagged for 
review by the emergent filter. Without the emergent filter it 
would be difficult to accurately identify arrival and 
departure dates of when a bird appears in a county. The 
threshold of occurrence established by the emergent filter 
allows the determination of arrival and departure and then 
accurately flags outlier observation for further processing 
and review.  

 

	
  
Tompkins Co.  Jefferson Co. 

Total Observations 704,053 78,745 
Total Flagged 50,743 6,082 

Percent Flagged 7 8 
_____________________ 

Total Flagged Expert 38,574 3,787 
Total Flagged Novice 12,170 2,295 

Percent Expert 5 5 
Percent Novice 2 3 

 

 
Table 1. Results of the Emergent Filter process applied to 2 

counties in Upstate New York (upper), and the proportion of 
flagged records submitted by experts and novices (lower). 

 
 



 
 
Figure 4. The acceptable date range (dark bars) for the occurrence 
of Chipping Sparrow in 2 counties in New York. All records that 
fall outside of the acceptable date range are plotted either as 
circles (novices) or triangles (experts). 

 

Can we identify observer variability in their 
ability to detect objects? 

eBird data are contributed by observers with a wide range 
of expertise in identifying birds. At one extreme observers 
with high identification skill levels contribute “professional 
grade” observations to eBird, whereas at the other extreme 
less-skilled participants contribute data of more variable 
quality. This inter-observer variation must be taken into 
account during analysis to determine if outlier observations 
(i.e., those observations that are unusual) are true 
occurrences of a rare species, or the misidentification of a 
common species. Since eBird engages a significant number 
of skilled observers who are motivated to detect rare 
species or are skilled in detecting elusive and cryptic 
species, being able to automatically and accurately 
distinguish their observations from those of less-skilled 
observers is crucial. This is because skilled observers are 
more likely to submit observations of unusual species that 
get flagged by the regional emergent filters (i.e., skilled 
birders like to find rare birds). What is required is an 
objective measure of observer expertise that would 
automatically classify unusual observations.  

To better understand observer variability in eBird we 
have applied a probabilistic machine learning approach 
called the Occupancy-Detection-Experience (ODE) model 
to provide an objective measure of expertise for all eBird 
observers [17]. The ODE model extends existing 
ecological models that measure the viability of a site as 

suitable habitat for a species, by predicting site occupancy 
by a particular species.   

We can use the ODE model to distinguish the 
difference between expert observers, who will find more 
birds and are more likely to find them outside of the 
emergent filter limits, and novice birders, who are more 
likely to misidentify common birds. Table 1 (bottom) 
shows the total number of observations by experts and 
novices that are flagged. As expected, expert observers had 
a greater number of flagged records, because of their 
enhanced bird identification skills, and their desire to find 
unusual birds. We can use the ODE model results for 
experts in the data filtering process by automatically 
accepting their expert observations, which dramatically 
reduces the total number of flagged records that need to be 
reviewed (Table 1 bottom). Finally, to test the accuracy of 
the ODE model we analyzed all observations that fell 
outside of the emergent filter for more than a dozen species 
that easily confuse novices, and show results for Chipping 
Sparrow (Figure 4). We did this by engaging the current 
reviewers for the 2 counties in New York, who confirmed 
that the ODE model properly categorized the observer as 
either an expert or novice and validated more than 95% of 
the expert observations that fell outside of the emergent 
filters. 

We have found that the combination of the emergent 
checklist filters with the ODE model provides the best 
strategy for both improving data quality and streamlining 
the review process in eBird. This two-step approach, where 
the emergent data filters are used to identify outliers, and 
the ODE model allowed us to identify valid outliers, 
identifies unusual records more accurately than previous 
methods. The result is that we can now provide accurate 
occurrence probabilities, which are based on existing eBird 
data to allow the quick identification and classification of 
outliers. 
 

How can we address the spatial bias in  
citizen-science projects? 

An inherent liability with many citizen-science projects is 
that observation locations are highly biased towards 
regions with high human populations.  If this inequity is 
ignored, the spatial bias will produce results in which 
regions with the most data have excessive influence on the 
overall results accuracy and regions with the least data are 
under represented [8].  We address this issue using a 
mediated optimization strategy to identify areas that if 



sampled would most improve eBird spatial coverage and 
improve analysis results. 
 

 
Figure 5. Top: locations in New York where submissions were 
made to eBird in 2009. Bottom: Results showing areas with 
sufficient data density (colored regions) and those requiring more 
data (white regions). 
 

Machine learning algorithms can improve the 
predictive performance of eBird by guiding the sampling 
process. Consider the locations where eBird observations 
were made in New York (Figure 5 top).  It is clear that 
spatial sampling biases are present as the majority of the 
observations come from a small subset of geographical 
locations.  Active learning applied to eBird improve the 
resulting predictive models by providing a context to 
advise participants where to sample next.  A first strategy, 
as displayed in Figure 5 (bottom), has been to aim for a 
uniform sampling coverage in geographical space, by 
concentrating data collection efforts to the areas of highest 
model uncertainty and low density.  This is accomplished 
through a novel active learning approach that combines 
density information and information-theoretic measures 
[19]. 

Already, our research in offering optimal sampling 
strategies is paying off. We display maps similar to Figure 
5 (bottom) on the eBird website, and provide rewards for 
individuals who report checklists from under sampled 
regions. Eventually, such sampling trajectories will be 
employed throughout eBird, to enhance the overall birding 
experience.  For example, it is straightforward to propose 

paths that have the highest probability of detecting birds. 
Hence one can envision educating observers by proposing 
appropriate paths that trains their detection capabilities on 
specific species or increases the probability of them 
recording a species they have never observed before.  

Challenge 4: Species Distribution Models 
The effective management and conservation of biodiversity 
requires knowledge of a species’ geographic distribution 
throughout the year. Until the inception of eBird, detailed 
data documenting a species’ distribution were often not 
available for the entire range of a species, particularly for 
widely distributed species or species not closely studied. 
eBird provides broad-scale survey data that allows 
researchers to analyze and interpret a specie’s distribution 
across broad spatial extents and for any time of year.  

One major area of analysis of eBird data is to explore 
the continent-wide inter-annual patterns of occurrence of 
North American birds. To do this we have developed new 
Spatial-temporal Exploratory Models (STEM) of species 
distributions, that allow us to automatically discover 
patterns in spatiotemporal data [8].  

We designed our statistical models specifically to 
discover seasonally- and regionally-varying patterns in 
eBird data. Spatiotemporal variation in habitat associations 
are captured by combining a series of separate submodels, 
each describing the distribution within a relatively small 
area and time window. The approach is semiparametric; 
yielding a highly automated predictive methodology that 
allows an analyst to produce accurate predictions without 
requiring a detailed understanding of the underlying 
dynamic processes. This makes STEMs especially well 
suited for exploring distributional dynamics arising from a 
variety of complex dynamic ecological and anthropogenic 
processes. STEMs can be used to study how spatial 
distributions of populations respond over time, both 
seasonally (Figure 6) as well as to broad-scale changes in 
their environments (i.e., changes in land-use patterns, 
pollution patterns, or climate change).  

The STEM visualizations are now being employed in a 
number of research and conservation initiatives. For 
example, bird distribution information used in the 2011 
State of the Birds Report prepared for the U. S. Department 
of Interior by the North American Bird Conservation 
Initiative (NABCI), was based on STEM model results. 
Additionally, other federal (i.e., Bureau of Land 
Management and U.S. Forest Service) and non-
governmental agencies (i.e., The Nature Conservancy) are 
using STEM distribution estimates to study placement of  



 wind farms for sustainable energy production, identifying 
and prioritizing areas for avian conservations and the 
Pacific Northwest.  

 
 

Conclusion 
 

In this paper, we have demonstrated the implementation of 
a novel network that links machine learning methods and 
human observational capacity to address several unique 
challenges inherent in a broad-scale citizen-science project.  
By exploring the synergies between mechanical 
computation and human computation, which we call a 
Human/Computer Learning Network we can leverage 
emerging technologies that integrate the speed and 
scalability of AI, with human computation to solve 
computational problems that are currently beyond the 
scope of existing AI algorithms. 
     eBird uses a broad-scale survey design to maximally 
engage volunteers to gather bird observations following a 
basic protocol for data collection. Designing such broad-
scale surveys to maximize the information obtained for use 
in analysis depends on finding the proper balance between 
data quantity and data quality. If we can engage a large 
number of participants to collect data through eBird’s very 
basic protocols a sufficiently large volume of data can be 
gathered and effectively analyzed. While eBird data has 
relatively lower per-datum information content, we have 
found that eBird data can contain more information for 
broad-scale distribution estimates than a smaller amount of 
data with higher per-datum quality [20].  
    The appropriate design of data input and management 
procedures is critical to maintain the balance between data 
quantity and data quality in broad-scale citizen science 
projects. The additional implementation of novel AI 
functionality provides incentives for encouraging 
surveyors to contribute even more data while 
simultaneously limiting errors and providing opportunities 
for dramatically improved data review and validation 
procedures. 
     Although our discussion has focused on one citizen-
science project, eBird, the general HCLN approach are 
more widely applicable. Specifically, by implementing an 
uncomplicated protocol via web-based and wireless 
handheld devices and providing appropriate rewards for 
participation, citizen-science projects can recruit large 
numbers of participants to submit massive quantities of 
meaningful data. By taking an adaptive learning approach 

Figure 6. This series of maps illustrate the seasonal patterns of 
occurrence of the Indigo Bunting (Passerina cyanea) 
throughout the United States. The maps illustrate the seasonal 
distribution estimates from a spatiotemporal exploratory model 
(STEM) during spring migration (top), the breeding season 
(middle) and during fall migration (bottom). Indigo Buntings 
are Neotropical migrants, wintering in Central America and 
returning to the United States annually to breed. The 
occurrence maps show the probability of encountering the 
species on an early morning 1-hour birding walk, with darker 
colors indicating higher probabilities. These maps provide 
continental-scale distribution estimates that allow the quick 
assessment of the rate of arrival and departure from breeding 
grounds, and over time will allow researchers to identify and 
quantify changes in bird populations. More STEM maps can be 
viewed on the eBird website (http://www.ebird.org). 

Spring 

Breeding 

Fall 



for both humans and computers we can improve the quality 
and scope of the data that the volunteers provide. Finally, 
new analysis techniques that bridge the gap between 
parametric and non-parametric processes provide 
extremely accurate estimates of species occurrence at 
continental levels. 
 In conclusion, broad-scale citizen-science projects can 
recruit extensive networks of volunteers, who act as 
intelligent and trainable sensors in the environment that 
gather observations across broad spatial (e.g., globally) and 
temporal (e.g., any time) extents.  However, there is much 
variability in the observations volunteers make. Artificial 
Intelligence processes can dramatically improve the quality 
of the observational data by filtering inputs using emergent 
filters based on aggregated historical data, and on the 
observers’ expertise.  By guiding the observers with 
immediate feedback on observation accuracy, the Artificial 
Intelligence processes contribute to advancing expertise of 
the observers, while simultaneously improving the quality 
of the training data on which the Artificial Intelligence 
processes make their decisions.  The outcome is improved 
data quality that can be used for research and analysis. 
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