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Abstract—Research projects that use the efforts of vol-
unteers (“citizen scientists”) to collect data on organism 
occurrence must address issues of observer variability 
and species misidentification. While citizen science pro-
jects can engage a very large number of volunteers to 
collect volumes of data, they are prone to contain re-
porting errors. Our experience with eBird, a citizen 
science project that engages tens of thousands of volun-
teers to collect bird observations, has shown that a mas-
sive effort by volunteer experts is needed to screen data, 
identify outliers and flag them in the database. But the 
increasing volume of data being collected by eBird plac-
es a huge burden on these volunteer experts. In order to 
minimize this human effort, we explored whether previ-
ously collected eBird data can be used to create auto-
mated quality filters that emerge from the data. We do 
this through a two-step process. First a data-based 
method detects outliers (i.e., observations that are unu-
sual for a given region and week of the year). Next, a 
novel machine learning method that estimates observer 
expertise is used to decide if the unusual observation 
should be flagged or not. Our preliminary findings indi-
cate that this automated process reliably identifies out-
liers and accurately classifies them as either an error or 
represents a potentially valuable observation. 

 Keywords- citizen-science; data quality; data-
base filters; species occurrence; machine learning. 

I. INTRODUCTION 
Citizen-science projects enlist the public in sci-

entific endeavors [1], and often provide data with 
more intensive sampling through longer periods of 
time and across broader spatial extents. Citizen scien-
tists can be motivated to collect large amounts of data 
at relatively little cost to the scientific research enter-
prise [2].  Furthermore, engaging citizen scientists in 
meaningful projects has the added benefit of broaden-
ing the public understanding of the scientific process, 
which in turn can lead to better-informed decision 
making at all levels of society [3]. 

To realize the great potential of citizen science, 
researchers must address many challenges in the in-
terpretation and use of broad-scale, volunteer-
collected data.  For example, volunteers have a wide 

range of expertise in their ability to identify organ-
isms. Additionally, observers may fail to detect some 
organisms altogether, and hence report “false absenc-
es”. These, as well as other characteristics of citizen-
science data, make their accurate use challenging, 
and must be considered when designing citizen-
science projects or when analyzing their data. 

 In this paper we address the challenge of identi-
fying organism misidentifications in broad-scale citi-
zen-science projects. Traditionally, if data are 
screened in citizen-science projects, experts are en-
gaged. However, when large-scale citizen science 
projects gather massive quantities of data, the work-
load on these experts can be overwhelming. In this 
paper we describe an automated system in which 
spatial and temporal data filters emerge from existing 
data. First, previously collected data is used to identi-
fy outliers. Next, an estimate of the observer’s ability 
based on their previous submissions determines if an 
unusual observation is flagged for further review. We 
demonstrate the use of this emergent filter data vet-
ting system using bird observations from eBird 
(http://www.ebird.org).  

 
II. eBIRD 

eBird is an online checklist program that gathers 
tens of millions of bird observations annually from a 
global network of volunteers [4]. eBird is amassing 
one of the largest data resources on species distribu-
tions; more than 60 million species observations from 
more than 500 thousand locations globally and is 
growing at a rate of 25% annually. In 2010 over 22 
thousand participants volunteered more than 1 mil-
lion hours collecting almost 18 million bird observa-
tions. All eBird data are openly available 
(http://www.avianknowledge.net) and shared with 
numerous global biodiversity initiatives. 

eBird data reveal patterns of bird occurrence 
across space and through time, and are providing a 
data-rich foundation for understanding the broad-
scale dynamic patterns of bird populations [5-14]. 
Recently, the United States Department of the Interi-



or used eBird data as the basis for the 2011 State of 
the Birds Report, which estimated the occupancies of 
bird populations on public lands [15].  

eBird’s data contain the following information: 
observer, location, visit, species, and number ob-
served. Basic information about the observer such as 
name and contact information, allow every bird ob-
servation to be attributed to a specific person. Loca-
tion data such as the site name, the coordinates where 
the observations were made and the geographic area 
represented by the location are stored with every visit 
to that location. Information about a specific visit 
consists of date and time of visit, amount of effort 
expended, such as distance traveled, time spent and 
area covered, and whether or not all the species ob-
served were reported. Species observations consist of 
a checklist of birds observed and how many individ-
uals of each species were counted. These data form 
the core of the eBird relational database	
  [16]. 

Data quality is a major issue for eBird, particu-
larly regarding an observer’s ability to correctly iden-
tify birds to the taxonomic level of a species. A net-
work of bird distribution experts volunteer their time 
to create expert-defined checklist filters. These ex-
perts have a thorough knowledge of the seasonal pat-
terns of bird occurrence for a specific region. Based 
on this knowledge, each expert creates a regional 
checklist filter that delineates, by month, when and 
how many of each species are expected in that re-
gion. The checklist of birds available on the eBird 
data entry form is based on these filters, and only 
those species expected in a specific geographical re-
gion at a specific time of year, are available. If a con-
tributor wants to submit a species that is not on the 
checklist they must take an active additional step to 
report a species that would not normally be expected. 
Expert-defined checklist filters can be for an area as 
large as a country, or as small as a nature preserve. 
Presently eBird employs more than 1200 filters.  

A network of more than 450 volunteers review 
flagged records in eBird. The reviewers are knowl-
edgeable about bird occurrence for a region, and 
many also established the expert-defined checklist 
filters. Reviewers contact those individuals who 
submitted flagged records to obtain additional infor-
mation, such as field notes or photographs, in order to 
confirm unusual records. In 2010, 4% (720,000 ob-
servations) of the 18 million observations submitted 
to eBird were flagged for review, and 1.5% (10,800 
observations) were marked as invalid following re-
view.  All records, their flags and their review history 
are retained in the eBird database. 

The challenge that eBird now faces is that he 
project’s success has generated an enormous volume 
of new observations to be reviewed (e.g., more than 3 
million observations in May 2011) and the network 

of volunteer regional reviewers is being over-
whelmed by the number of records needing to be 
reviewed. In order to address this issue we tested 
whether a data quality filter and screening process 
could be automated, and consider three questions: 

 
1. Emergent Filters: Can historic data submissions 

to eBird be used to automatically generate accu-
rate checklist filters? 

2. ODE Model: Can we use an occupancy-
detection model to rank observer ability and use 
these scores to improve data quality? 

3. Do the Emergent Filters and ODE model im-
prove data quality processes? 
 

To answer these questions we describe an ap-
proach where existing eBird data establish count lim-
its and generate daily regional checklist filters, and a 
machine-learning algorithm categorizes a contribu-
tor’s ability. We then test this approach within a lim-
ited eBird region to compare the automated with the 
expert data quality process. 

 
III. METHODS 

For this preliminary study we analyzed eBird da-
ta from one county in New York State. Jefferson 
County, located at the border of Lake Ontario and the 
Saint Lawrence River, is a large (4,810 km²) ecologi-
cally rich and diverse county. It was selected for this 
study because it has reasonably good year-round cov-
erage from a wide spectrum of users. More than 
6,000 checklists representing over 73,000 observa-
tions were submitted from Jefferson County as of 
July 1, 2011. 

A regional expert developed a checklist filter for 
Jefferson and the surrounding counties, which was 
the basis for all following comparisions. 

 
A. Emergent Data Filter 
One of the most common and powerful calcula-

tions performed on eBird data is a measure of how 
frequently a species is reported (Figure 1), which is 
calculated using the number of checklists that report-
ed the species divided by the total number of check-
lists submitted for a specific region. The result is a 
measure of the “likelihood” of observing a specific 
bird species within that region. Since each observa-
tion contains details of where and when a bird was 
detected, we can calculate the frequencies of bird 
occurrence at any spatial level and for any date.  

For this study we compared eBird submissions 
with the calculated frequency of occurrence based on 
all data reported for that species at the county level 
and date range. We calculated day of year frequen-
cies for every species observed in Jefferson County, 
New York based on eBird data gathered between 



2003 and 2011. First a day of year value was as-
signed to each checklist ranging from 1 to 365. Each 
day had as many as 125 checklist submissions, or as 
few as 3 checklist submissions.  To account for this 
variation in the number of checklists per day the fre-
quencies were calculated based on a sliding 7-day 
window.  The frequency for day X was calculated 
using a total number of checklists from 3 days prior 
through 3 days after day X.  We then assigned the 
highest initial frequency within that same sliding 7-
day window to day X.  The resulting frequency is an 
estimate of the likelihood of observing a species on 
each of the 365 days of the year. 

 
B. Ranking observer ability 
eBird data are provided by thousands of observ-

ers with a wide range of expertise in identifying 
birds, and variable effort made in contributing to 
eBird. For example, at one extreme, several thousand 
observers with high identification skill levels con-
tribute “professional grade” observations to eBird, 
whereas at the other extreme tens of thousands of 
participants contribute data of more variable quality. 
While there is much variability in the number of 
checklists that eBird volunteers submit, the top third 
of eBird contributors submit more than 90% of all 
data. While the identification skills of this subset of 
contributors is unknown, it is probably skewed to the 
more skilled because individuals who regularly con-
tribute tend to become better observers [17].  

This inter-observer variation must be taken into 
account during analysis because outlier observations 
(i.e., those observations that are unusual) could pro-
vide potentially important information on unique or 
changing patterns of occurrence. Since eBird engages 
a significant number of skilled observers who are 
motivated to detect rare species or are skilled in de-
tecting elusive and cryptic species, being able to ac-
curately distinguish their observations from those of 
less-skilled observers is crucial. The challenge is to 
obtain an objective measure of observer expertise that 
can be used to classify unusual observations. 

To do this we developed a model to estimate ob-
server expertise. Ecologists are frequently interested 
in the viability of a site as suitable habitat for a spe-
cies, and have developed models to predict the occu-
pancy of a site by a particular species given a set of 
environmental covariates describing that site. A gen-
eral form for these models is shown in Equation 1, 
where !! is a set of environmental covariates for lo-
cation !, !! represents the occupancy of location ! and 
!!""(!!)  is the function capturing the occupancy 
model (see Table 1 for notation description). 

Pr !! = 1 = !occ !!   (1) 
 

Many different approaches have been used to 
model  !!"" !!  including GLMs/GAMs [18], Max-
imum Entropy models [19], and boosted regression 
trees [20]. 

Many species are difficult to detect for a variety 
of reasons such as camouflage, nocturnal behavior, 
and evasiveness.  If a species is erroneously reported 
to be absent at a site when it was in fact present at 
that site, then SDMs built from such data will under-
estimate the true occupancy of that species for that 
site. To address this issue, Mackenzie et al. [21] pro-
posed an Occupancy-Detection (OD) model where 
true occupancy of a site ! is represented as a latent 
variable !!. Under the OD model, a site is visited 
multiple times. Each visit ! results in an observation 
!!, where the observation process is influenced by the 
true occupancy of the site and by a function !det !! , 
where !! are detection covariates (under the notation 
of Mackenzie et al. [21], ! = !occ !!  and 
! = !obs !!  ). Equation 2 summarizes the process:	
  

Pr !! = 1 = !! ! ⋅ !obs !!   (2) 

!! ∈ (0, 1) The occupancy of location ! by the 
species of interest. 

!! ∈ (0, 1) The detection/non-detection of the 
species of interest in observation !. 

!! ∈ (!"#. , !"#. ) The expertise of the observer  ! 

!! A vector of environmental covari-
ates for location !. 

!! A vector of covariates describing 
the observation process for obser-
vation !. 

!! A vector of expertise covariates 
for observer !. 

!(!) The location of observation !. 

!(!) The observer that recorded obser-
vation ! 

Table 1: Terms and notation used for the Occupancy-
Detection and Occupancy-Detection-Experience models. 
 

The OD model makes two key assumptions. 
First, it assumes population closure in which the true 
occupancy of a site !! remains unchanged over the 
multiple visits to that site. Second, the OD model 
assumes that observers do not report false positives 



(i.e., an observer does not mistakenly report a species 
to be present when it is in fact absent).  

The eBird experience level of an observer, which 
is the combination of their ability in identifying birds 
and their level of participation in eBird, can also in-
fluence the observation process. As a result we ex-
tended the OD model with an eBird experience com-
ponent resulting in the Occupancy-Detection-
Experience (ODE) model. In this extension, we add a 
new latent variable !!(!)  and associated function 
!exp !!(!)  which capture the experience level (ie. 
eBird experience rated as high or low) of the observer 
!(!) that recorded observation !. 

As shown in Equation 3, this experience variable 
is a function of a set of covariates !!(!) that include 
characteristics of the observer such as the total num-
ber of checklists submitted and relative to the total 
number of species reported, and the total number of 
flagged records rejected. As shown in Equation 4, the 
observation process is now influenced by the true 
occupancy of a site and by the function  
!!"#(!! , !! ! ), which is now a function of the obser-
vation covariates. 
Pr !!(!) = 1 = !exp !!(!)    (3) 

 
Pr !! = 1 = !!(!) ⋅ !obs !! , !!(!)      (4) 

 
The ODE model relaxes the assumptions of the 

OD model by allowing false positives by the observ-
ers, for both levels of expertise. More details about 
the ODE model can be found in [22]. 

The automatic prediction of a contributor’s eBird 
experience level can provide additional information 
that can be used to classify submissions. To test this, 
we used the ODE model to identify the eBird experi-
ence level based on the observer’s checklist history, 
which included the total number of checklists they 
submitted, the total number of birds identified, and 
the total number of rejected records. We choose the 
breeding season because many bird species are more 
easily detected during breeding.  

For this experiment we considered each bird spe-
cies as a different prediction problem, and made our 
observer evaluations based on identification of five 
common bird species easily detected and identified 
by novices and experts alike, and five bird species 
that are difficult to detect and identify (Table 2). 

To train and test our models, we divided all 
checklists according to the observers submitting them 
into either training or test data sets. eBird project 
staff manually labeled the eBird experience level of 
birders in our training set using a variety of criterion 
including personal knowledge of birder reputation, 
number of checklists rejected during data verifica-
tion, and manual inspection of eBird checklists. Data 

from 100 expert birders and 208 novices birders were 
used to train the ODE model. Birders that submitted 
checklists from Jefferson Co. in 2009 and 2010 were 
placed into an independent test set while all other 
birders were placed into a training set. The Jefferson 
Co. test set consisted of 36 birders. We trained the 
ODE model and then used the trained ODE model to 
predict birder expertise from the Jefferson Co. 

 
Common Bird Species Uncommon Bird Species 
Wild Turkey 
(Meleagris gallopavo) 

Willow Flycatcher 
(Empidonax traillii) 

Pileated Woodpecker 
(Dryocopus pileatus) 

Red-eyed Vireo 
(Vireo olivaceus) 

Blue Jay 
(Cyanocitta cristata) 

Veery 
(Catharus fuscescens) 

Black-capped Chickadee 
(Poecile atricapillus) 

Savannah Sparrow 
(Passerculus sandwichensis) 

American Robin 
(Turdus migratorius) 

Swamp Sparrow  
(Melospiza georgiana) 

TABLE 2. Bird species used to categorize identification eBird 
participants. Common bird species were those that were easy to 
observe and identify, attracted to humans, or abundant. Uncommon 
bird species were those that were best identified by vocalizations, 
or hard to observe, and present numerous identification challenges. 

 
C. Automated Data Quality Process 
To test the accuracy of the automated data quali-

ty filter, a 2-step process was developed. First, we set 
the emergent data filters at 5% of total frequency as a 
threshold level to identify all outlier observations. 
Next, the ODE model score was used to identify 
whether the observer had a high level of eBird exper-
tise. If so, their records were accepted. However, if 
the model identifies them with a low level of eBird 
expertise, their records would be marked for review.  

 
IV. RESULTS 

Figure 1 shows the results of the two-step data 
quality experiment for 6 exemplar species.  

 
A. Expert-defined versus Emergent data filters 
In all cases examined, the expert-defined check-

list filters for Jefferson Co. accepted observations 
over a broader temporal window than emergent data 
filters. Three general filter categories were apparent. 
First, an expert may have a particular interest or 
knowledge of certain species and the data filters can 
be very accurate (e.g., Fig. 1.A American Tree Spar-
row Jan.- May;). Second, the expert-generated filter 
may accurately describe the bird’s biology, which 
may be quite different from what eBird contributors 
report (e.g., Fig. 1.B Chipping Sparrow). Chipping 
Sparrows are a common breeding bird in Jefferson 
Co., are often found in close proximity to lawns and 
gardens, and have a very distinctive plumage and 
song. However, immediately after the breeding sea-
son (end of July) they stop singing, disperse, and 
begin to molt into a less distinctive plumage; they 



become more cryptic and harder to detect, which 
would lower the probability that they get reported to 
eBird. The final category of filters included expert-
defined filters that accepted observations, even when 
it was very unlikely that the bird would be encoun-
tered. For example, the expert filters allowed either 
Swamp or Savannah Sparrow (Fig. 3 C and D) to be 
reported for any month of the year in Jefferson Co. 
While it is certainly possible for either to occur in 
Jefferson Co. year-round, observations falling outside 
the typical pattern of occurrence (e.g., breeding sea-
son), and especially in winter, should be reviewed. In 
fact, for both sparrow species there have been no 
reports to eBird prior to mid-April. 

For emergent data filters the temporal resolution 
and the 5% limit in total frequency of reports created 
a more conservative window of occurrence than that 
developed by the expert. Since the emergent data 
filters are based on observer submissions they, by 
definition, match the patterns of when most eBird 
volunteers reported a particular species for Jefferson 
Co. (Fig. 1). However, the emergent data filters sig-
nificantly increased the number of flagged records; 
the emergent data filters flagged more than 3,000 
observations for review, compared to 750 observa-
tions that were flagged by the expert-defined filters.  

We conclude that the emergent data filters set at 
a 5% cut-off accurately represented the patterns of 
reporting to eBird for the majority of observations, 
and allow the easy identification of any outliers (Fig. 
1 light and dark circles). However, it is a very con-
servative filter, which results in a significant increase 
in the number of flagged records that a regional edi-
tor must review. If the automated frequency filter 
alone were employed, it would lead to a greatly in-
creased workload for the regional editors. While one 
solution would be to set the cut-off for the filter (e.g., 
2% or 3% of detection) could cut back on the amount 
of review, but would increase the possibility of miss-
ing misidentifications to become part of the eBird 
database.  

 
B. ODE Model Results 
The ODE Model ranked all individuals who 

submitted observations to eBird from Jefferson Co. 
Of the total of 36 individuals reported observations to 
eBird from Jefferson Co. 10 individuals were ranked 
as having a high level of eBird expertise, and the rest 
with a low level. We next plotted all records that 
were flagged by the emergent data filters as light 
circles (high level of expertise) and dark circles (low 
level of expertise) on the plots (Fig. 1).  

What is most striking is how individuals with a 
low level of eBird expertise tended to report both 
American Tree Sparrow and Chipping Sparrow out-
side their typical windows of occurrence more fre-

quently (Figure 1 A and B).  This example identifies 
the potential significance of a 2-level automated data 
quality filter.  The American Tree Sparrow and Chip-
ping Sparrow are very similar looking sparrows that 
are attracted to bird feeders and easily observed. 
Many inexperienced observers confuse these species, 
and misidentification is a problem particularly at their 
first seasonal arrival. Those observers who had low 
ODE scores reported American Tree Sparrows earlier 
in fall than observers with high ODE scores, and their 
observations fell outside the general patterns of the 
frequency graphs. This example shows the significant 
contribution that the emergent filter process could 
have for identifying outlier reports for birds that are 
relatively common, and which would normally pass 
as valid records under the expert-defined filter model. 

In several instances the ODE model did not cate-
gorize an individual’s eBird expertise level similar to 
how their peers perceive their bird identification 
skills. For example, several of the individuals who 
had low ODE scores were known to be very good at 
bird identification. However, the ODE model did a 
very good job in identifying individuals who were 
known to have modest bird identification skills. The 
ODE model also incorporates the number of checklist 
submissions that a user contributes to a region, and in 
so doing does not rank observers solely on their skills 
in bird identification, but also in their level of partici-
pation in eBird in a given region. Weighting eBird 
expertise over simple identification expertise has 
distinct advantages for our models, which depend 
upon users understanding and correctly reporting all 
data required for an eBird observation (e.g., location, 
effort etc). 

 
C. A two-step automated filter 
The emergent data filters combined with the 

ODE model results an automated data quality filter 
for eBird appears promising. When this 2-step pro-
cess was compared to the results of the expert-
defined filters for Jefferson Co. a comparable number 
of records requiring review were obtained. Thus, 
while the total number of records requiring review 
did not decline, those records that were flagged by 
the automated filter identified more subtle potential 
misidentifications.  
 

V. CONCLUSION 
Data quality is a major challenge in any sensor 

network. This is especially true when the sensor net-
work consists of a massive number of volunteer ob-
servers that have differing abilities to accurately iden-
tify birds. To address one aspect of the data quality 
challenge we created a two-step automated process 
that first would reliably identify outliers, and then 
classify those outliers either as an error or something 



real. What is unique about our approach is that we do 
not remove outliers, but instead classify them as ei-
ther unusual or erroneous. We can do this because of 
sufficient domain knowledge (e.g., understanding of 
the patterns of bird distributions) to distinguish be-
tween these 2 classes of outliers, and sufficient data 
so that a quality filter can emerge from the data.  

The classification of outliers is a major data 
quality issue in all citizen-science projects, and is 
seldom addressed and often ignored. One project that 
has addressed this issue is Galaxy Zoo 
(http://zool.galaxyzoo.org), which used volunteers to 
classify objects from images made during the Sloan 
Digital Sky Survey. Individual variation was ad-
dressed by having many individuals classify the same 
object. While it may appear that a Galaxy Zoo ap-
proach to data quality control would not work when 
volunteers are actively collecting data across a broad 
spatial and temporal landscape. However, by classi-
fying observations across specific geographic regions 
(in this case a county in New York State) we can 
identify general observation patterns, which allows 
for quality filters to emerge from the data. While 
Galaxy Zoo harnesses multiple observers to catego-
rize a single object, eBird is able to use multiple 
checklists from many observers in a given geographic 
region to categorize outliers. Our findings show that 
this process could significantly improve the ability to 
identify outlier observations and categorize them as 
either true identifications, or false misidentifications. 

This paper assessed the performance of a more 
automated process for addressing a major data quality 
need in broad-scale citizen-science projects; filtering 
misidentified organism occurrences. In this paper we 
specifically addressed three questions.  

A. Can previous data submissions be used as 
an to automatically generate accurate data filters? 
We found that using historic data provided a higher 
level of selectivity than expert-defined filters. How-
ever, data-defined checklist filters set at a 5% ac-
ceptance level is more conservative, and generated a 
significantly higher number of flagged records for 
editors to review. 

B. Can we rank observer ability and use these 
scores in the data validation process? 

The ODE model resulted in the accurate classifica-
tion of contributors on their general level of eBird 
experience.  

C. Does this automated data quality functional-
ity improve data quality processes? 

The combination of the emergent checklist filters 
with the ODE model provided the best strategy for 
analyzing species reports in eBird. This is particular-
ly true for common or moderately common species of 
birds (Fig. 1). The two step approach, where the 

emergent data filters are used to identify outliers, and 
the ODE model allowed us to identify valid outliers, 
allowed very accurate estimates of dynamic patterns 
of bird occurrence that provide detailed estimates of 
species migration timing; when they arrive, when 
they become more regular, and when they depart. 
Our approach established occurrence probabilities 
based on when submissions occur and allowed the 
quick identification and classification of outliers. 

An automated approach to checking the validity 
of identifications made by citizen scientists that is 
based on both the patterns of submissions within a 
predefined spatial and temporal extent, as well as the 
contributor’s skill level has the potential to play a 
critical role in improving data quality in broad-scale 
citizen-science projects. The results we present, how-
ever, are from a very small region, and must be tested 
more broadly, and within areas where both more data 
and fewer data are submitted. In addition, the current 
approach does not consider data entry errors, and any 
automated filtering process must be extremely careful 
when blanket-accepting all records from a particular 
class of users. Finally, a birder can be an expert ob-
server in their home region, but less so outside of that 
region, which would require that an individual’s ex-
pertise would need to be established regionally.  
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Figure 1. The graphs represent the frequency of checklists reporting a selection of birds in Jefferson Co. New York. They include: American Tree 
Sparrow (Spizella arborea) (A) and Chipping Sparrow (Spizella passerina) (B), Swamp Sparrow (Melospize georgiana) (C), Savannah Sparrow 
(Passerculus sandwichensis) (D), Veery (Catharus fuscescens) (E), and Red-eyed Vireo (Vireo olivaceus) (F), The Y-axis is the proportion of 
checklists that reported the species, and the X-axis is the date. The solid black line is the frequency of checklists that reported that species during 
a 1-week period. The dark bar is the window where the expert-defined filter permits the species to occur, and the light bar shows the emergent 
data filter limits. The solid dark circles are observations made by observers the ODE model identified as birders with low eBird expertise, and 
solid light circles with high eBird expertise. What is obvious is that species patterns of occurrence vary in the county. 


