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The Innovative Applications of Arti!cial Intelligence con-
ference (IAAI) is the premier venue for documenting the
transition of AI technology into applications. In this issue

of AI Magazine, we continue our presentation of extended ver-
sions of papers presented at IAAI-12 (held in Toronto, Ontario,
Canada) that were selected for their description of AI technolo-
gies that are in practical use.

Our selections for this issue describe deployed applications.
They explain the context, requirements, and constraints of the
application, how the technology was adapted to satisfy those
factors, and the impact that this innovation brought to the
operation in terms of cost and performance. The articles also
supply useful insights into use cases that we hope can also be
translated to other work that the AI community is engaged in.

In the !rst of these deployed application articles, eBird: A
Human/Computer Learning Network to Improve Biodiversity
Conservation and Research by Steve Kelling, Carl Lagoze, Weng-
Keen Wong, Jun Yu, Theodoros Damoulas, Jeff Gerbracht,
Daniel Fink, and Carla Gomes, the authors describe an intrigu-
ing application that successfully combines the best in human
and arti!cial computing capabilities with an active feedback
loop between people and machines.

The next two papers articles describe high-value industrial
applications where diagnostic capabilities avoid considerable
cost and accidents on a daily basis. A Real-Time Decision Sup-
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Introduction to the IAAI Articles in This Issue

Deployed Innovative Applications 
of Arti!cial Intelligence 2012

Markus Fromherz and Héctor Muñoz-Avila

! This issue of AI Magazine features expand-
ed versions of articles that discuss deployed
applications from the 2012 AAAI Conference
on Innovative Applications of Arti!cial Intelli-
gence (IAAI-12). 
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port System for High Cost Oil Well Drilling Opera-
tions by Odd Erik Gundersen, Frode Sormo, Agnar
Aamodt, and Pal Skalle applies case-based reason-
ing to the continuous analysis of drilling data to
predict potential problems. Statistical Anomaly
Detection for Train Fleets by Anders Holst, Markus
Bohlin, Jan Ekman, Ola Sellin, Björn Lindström,
and Stefan Larsen presents a novel statistical
approach to detect anomalies in train operations
and again anticipate problems.

A challenging category of applications are those
that interact with users that are not aware of the
capabilities and limitations of the underlying AI
technology. In Applying Automated Language
Translation at a Global Enterprise Level, Nestor
Rychtyckyj and  Craig Plesco describe their experi-
ence with adapting language translation technolo-
gy to the very diverse needs of the employees in a
large corporation. Likewise, although  on a small-
er scale, Stephanie Valentine, Francisco Vides,
George Lucchese, David Turner, Hong-hoe Kim,
Wenzhe Li, Julie Linsey, and Tracy Hammond pres-
ent Mechanix: A Sketch-Based Tutoring and Grad-
ing System for Free-Body Diagrams, a tool that has
been used in several engineering courses to support
both teachers and students in explaining and
learning the principles of statics.

We hope you enjoy and learn from the articles
in this and the previous issue of AI Magazine. To
learn more about innovative applications of arti!-
cial intelligence, we invited you to attend the
upcoming conference in Bellingham, Washington,
USA (www.aaai.org/iaai13). We also encourage you
to submit a description of your AI application to
future iterations of the Innovative Applications of
Arti!cial Intelligence Conference, sponsored by
AAAI.

Markus Fromherz was chair of the 2012 Innovative
Applications of Arti!cial Intelligence conference. He is
the chief innovation of!cer for healthcare at Xerox and
a scientist and former director at the Palo Alto Research
Center.

Héctor Muñoz-Avila was the cochair of the 2012 Inno-
vative Applications of Arti!cial Intelligence conference.
He is an associate professor at the Department of Com-
puter Science and Engineering at Lehigh University.

Please Join Us for the Twenty-Fifth
Annual Conference on Innovative

Applications of Arti!cial Intelligence!
July 14–18 2013

Bellevue, Washington USA

The Twenty-Fifth Annual Conference on Innovative
Applications of Arti!cial Intelligence (IAAI-13) will be
held July 14–18, 2013 in Bellevue, Washington, USA. The
conference will focus on successful applications of AI
technology. The conference will use technical papers,
challenge papers, invited talks, and panel discussions to
explore issues, methods, and lessons learned in the devel-
opment and deployment of AI applications; and to pro-
mote an interchange of ideas between basic and applied
AI.

IAAI-13 will feature papers in three tracks: (1) deployed
application case studies, (2) challenge problem papers,
and (3) emerging applications or methodologies.
Deployed application case study papers at IAAI-13 will
describe deployed applications with measurable bene!ts
that include some aspect of AI technology. Challenge
problem papers will identify challenges to apploying AI
to real world problems. Emerging application case study
papers at IAAI-13 will bridge the gap between basic AI
research and deployed AI applications by discussing
efforts to apply AI tools, techniques, or methods to real-
world problems. 

Hector Munoz-Avila, Conference Chair 
Lehigh University, USA

David Stracuzzi, Conference Cochair 
Sandia National Laboratories, USA

For more information about IAAI-13,
please see the  conference website

www.aaai.org/iaai13
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The transformational power of today’s computing, togeth-
er with information and communication technologies, is
providing new opportunities to engage the public to par-

ticipate in and contribute to a myriad of scienti!c, business, and
technical endeavors. For example, projects such as Galaxy Zoo,
eBird, and FoldIt demonstrate the power of engaging the public
in the investigation of a variety of large-scale scienti!c prob-
lems. These and similar projects leverage emerging techniques
that integrate the speed and scalability of mechanical computa-
tion, using advances in arti!cial intelligence (AI), with the real
intelligence of human computation to solve computational
problems that are beyond the scope of existing algorithms (Law
and von Ahn 2011).

Human computational systems use the innate abilities of
humans to solve certain problems that computers cannot solve
(Man-Ching, Ling-Jyh, and King 2009). Now the World Wide
Web and wireless handheld devices provide the opportunity to
engage large numbers of humans to solve these problems. For
example, engagement can be game based, such as FoldIt, which
attempts to predict the structure of a protein by taking advan-
tage of humans’ puzzle-solving abilities (Cooper et al. 2010); or
Galaxy Zoo, which has engaged more than 200,000 participants
to classify more than 100 million galaxies (Lintott et al. 2008).
Alternatively, the web can be used to engage volunteers to
actively collect data and submit it to central data repositories.
Projects such as eBird engage a global network of participants to

Copyright © 2013, Association for the Advancement of Arti!cial Intelligence. All rights reserved. ISSN 0738-4602

eBird: A Human / Computer 
Learning Network to 
Improve Biodiversity 

Conservation and Research

Steve Kelling, Carl Lagoze, Weng-Keen Wong, Jun Yu, 
Theodoros Damoulas, Jeff Gerbracht, Daniel Fink, Carla Gomes

! eBird is a citizen-science project that takes
advantage of the human observational capaci-
ty to identify birds to species, and uses these
observations to accurately represent patterns of
bird occurrences across broad spatial and tem-
poral extents. eBird employs arti!cial intelli-
gence techniques such as machine learning to
improve data quality by taking advantage of
the synergies between human computation and
mechanical computation. We call this a
human/computer learning network, whose core
is an active learning feedback loop between
humans and machines that dramatically
improves the quality of both and thereby con-
tinually improves the effectiveness of the net-
work as a whole. In this article we explore how
human/computer learning networks can lever-
age the contributions of human observers and
process their contributed data with arti!cial
intelligence algorithms leading to a computa-
tional power that far exceeds the sum of the
individual parts. 
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report bird observations that are used to generate
extremely accurate estimates of species distribu-
tions (Sullivan et al. 2009). 

Now systems are being developed that employ
both human and mechanical computation to solve
complex problems through active learning and
feedback processes. These human/computer learn-
ing networks (HCLNs) can leverage the contribu-
tions of broad recruitment of human observers and
process their contributed data with AI algorithms
for a resulting total computational power far
exceeding the sum of their individual parts. This
combination can be deployed in a variety of
domains and holds enormous potential to solve
complex computational problems.

A key factor in the power of an HCLN is the
manner in which the bene!ts of active learning are
cyclically fed back among the human participants
and computational systems. We use “active learn-
ing” in both of its commonly used senses: the
machine learning sense as a form of iterative super-
vised learning, and the human sense in which
learners (our volunteers) are actively and dynami-
cally guided to new levels of expertise. The role of
active learning in an HCLN is illustrated in !gure
1. In our example a broad network of volunteers
acts as intelligent and trainable sensors to gather
observations. AI processes dramatically improve

the quality of the observational data the volun-
teers provide by !ltering inputs based on aggregat-
ed historical data and observer expertise. By guid-
ing observers with immediate feedback on
observation accuracy AI processes contribute to
advancing observer expertise. Simultaneously, as
observer data quality improves, the training data
on which the AI processes make their decisions
also improves. This feedback loop increases the
accuracy of the analysis, which enhances the gen-
eral utility of the data for scienti!c purposes.

A successful HCLN must be able to address the
four following challenges. First, a task must be
identi!ed that human computational systems can
complete but mechanical computational systems
cannot (Law and von Ahn 2011). Second, the task
must be suf!ciently straightforward and incen-
tivized to maximize participation (Wood et al.
2011). Third, the complimentary abilities of both
humans and machines must be clearly identi!ed
so that they can be leveraged to increase the accu-
racy and ef!ciency of the network (Kelling et al.
2011). Finally novel methods for aggregating and
analyzing the noisy and complex data from multi-
ple human computers must be employed (Fink et
al. 2010). In this article we use our experience with
eBird as a model to address these four HCLN chal-
lenges. 

Accepted 

Flagged for Review

Bird Watcher

Data Input
Filter 

Expertise
Model 

Arti!cial
Intelligence

Maps +
Visualizations

Location Optimization +
Crowdsourcing Incentives

Experienced

Novice

Location
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eBird Database
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Figure 1. A Human / Computer Learning Network Example. 

Human observers and AI processes synergistically improve the overall quality of the entire system. Additionally, AI is used to generate analy-
ses. These analyses also improve as the quantity and quality of the incoming data improves.



Challenge 1: Species Identi!cation
Few mechanical computational systems have been
developed to classify organisms to the species lev-
el. Those that do exist typically can identify only a
single or small group of species and cannot classi-
fy a multitude of organisms. Only human
observers can reliably identify organisms to the
species level (Hochachka et al. 2007) and are capa-
ble of classifying hundreds of species. This is
because identifying a species is a complex task that
relies on a combination of factors. First, observers
must be able to process impressions of shape, size,
and behavior under variable observation condi-
tions. As this process continues, the observer must
combine these impressions with a mental list of
species most likely to occur at that speci!c location
and date until the species is correctly identi!ed.

eBird1 (Sullivan et al. 2009) is a citizen-science
project that engages a global network of bird
watchers to identify birds to species and report
their observations to a centralized database. Any-
one can submit observations of birds to eBird
through the web or wireless handheld devices (for
example iPhone and Android). To date more than
91,000 individuals have volunteered more than 4
million hours and collected over 100 million bird
observations, arguably the largest biodiversity data
collection project in existence. These amassed
observations provide researchers, scientists, stu-
dents, educators, and amateur naturalists with data
about bird distribution and abundance across a
variety of spatiotemporal extents. Dynamic and
interactive maps, graphs, and other visualizations
are available on the eBird website, and all data are
accessible through the Avian Knowledge Network
(Iliff et al. 2009). Since 2006 eBird data have been
used in more than 60 peer-reviewed publications
and reports, from highlighting the importance of
public lands in conservation (Kreger and Schmidt
2011) to studies of evolution (McCormack,
Zellmer, and Knowles 2009), climate change (Hurl-
bert and Liang 2012), and biogeography (Klicka et
al. 2011).

Challenge 2: 
Maximizing Participation

eBird uses crowdsourcing techniques to engage a
large numbers of people to perform tasks that auto-
mated sensors and computers cannot readily
accomplish (Howe 2008). This is accomplished
through the development of straightforward rules
for participation and incentives for contributing.
Initial incentives focused on helping scientists
study birds. This approach led to disappointing
participation in eBird. Recognizing this, the
emphasis of the project was changed from having
birders help scientists to tools that appealed to the

birding community. New features were developed
for eBird that allowed participants to (1) keep track
of their bird records; (2) sort their personal bird
lists by date and region; (3) share their lists with
others; and (4) visualize their observations on
maps and graphs. By providing these record keep-
ing, exploration, and visualization facilities as a
direct reward for participation, eBird participation
has grown exponentially (!gure 2). eBird appeals
to the competitiveness of participants, and
through the further development of eBird more
interactive and varied tools allowed participants to
determine their relative status compared to other
participants (such as numbers of species seen) and
geographical regions (such as checklists submitted
per state and province). Thus, by changing the
emphasis of eBird to one that supports the needs
and desires of the birding community. For exam-
ple, more data were gathered in May 2012 than
during the !rst 3 years of the project.

An additional key component of eBird’s success
has been the implementation of a sound data man-
agement strategy, which reduces the risk of data
loss and allows for ef!cient use and reuse of the
data. All eBird data contain the following informa-
tion: observer identi!cation, location, visit, and
what was collected. These data form the core obser-
vational data model (Kelling 2008) and provide the
opportunity for integration, visualization, experi-
mentation, and analysis. For example, eBird col-
lects the name and contact information for every
observer, which allows each observation to be
attributed to a speci!c person. Location data such
as the site name, the coordinates where the obser-
vations were made, and the geographic area repre-
sented by the location are stored with every visit to
that location. Information about a speci!c visit
consists of data and time of visit, amount of effort
expended, such as distance traveled, time spent,
and area covered, and whether or not all species
observed were reported. Species observations con-
sist of a checklist of birds observed and how many
individuals of each species were counted. 

Challenge 3: 
Identifying the Synergies Between

Humans and Machines
While eBird has been successful in engaging a glob-
al community of volunteers to contribute large
quantities of observations of birds, there are many
challenges to using eBird data for analysis. First,
observers are bound to misidentify birds, which is
the largest source of error in the eBird database.
Second, there is much variability in a participant’s
ability to identify birds, with some eBird contribu-
tors being experts in bird identi!cation, while oth-
ers are novices. Third, participation in eBird is not
uniformly distributed in space; most eBird obser-
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vations occur in regions where human population
densities are fairly high. Improving eBird data
quality is a constant and major effort. This is
because as data quality improves the accuracy in
estimating patterns of bird occurrence also
improves. In this section we describe how the
implementation of HCLN processes allow us
address these three data-quality issues.

How Can We Ef!ciently 
Filter Erroneous Data?
Data quality is a major issue for eBird, particularly
as it pertains to an observer’s ability to correctly
identify birds to the species level. While eBird has
motivated tens of thousands of volunteers to col-
lect large amounts of data at relatively little cost,
the misidenti!cation of birds is a major concern.

To overcome this issue eBird has employed a data-
validation system that relies heavily on a network
of volunteer experts in bird occurrence to vet the
data. However, the sheer volume of data being
gathered was beginning to overwhelm the volun-
teer editor network. Initially the system of record
review had been established to !lter data regional-
ly (that is, country, state, county), and temporally
at the monthly scale. The basic !lter mechanism
assigned a speci!c region with a value for a given
month, which corresponded to an expert’s opinion
for a maximum allowable acount for a given
region. If a submission exceeded the maximum
allowable amount, it was “"agged” for review by
one of more than 450 volunteer reviewers. Review-
ers contacted those individuals who submitted
"agged records to obtain additional information,
such as !eld notes or photographs, in order to con-
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2,000,000
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2,800,000

3,200,000
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Birder Tools Released

Figure 2. The Number of Observations Submitted Monthly to eBird Since Its Inception in Late 2003. 

Tools to better engage the bird watching community were released in mid-2005. Note the annual peaks of submission, which occur each
May, when spring migration is at its peak and birders are most active.



!rm unusual reports. In 2010, 4 percent or 720,000
of the 23 million records submitted to eBird were
reviewed. This number put a severe strain on the
volunteer network, with many reviewers com-
plaining they were overwhelmed from the sheer
volume of records to review.

To decrease the volume of data that needed to
be reviewed by the experts, we have implemented
a new data-quality !lter and screening process that
automates much of the review process. This new
process was based on one of the most powerful cal-
culations performed on eBird data, which is the
frequency in which a particular bird species was
reported during a particular period of time (!gure

3). Since each observation contains details of
where and when a bird was detected, we can esti-
mate the “likelihood” of observing a speci!c
species at any spatial level (for example, country,
state, county, backyard, or any spatial extent of
interest) and for any date. Frequency !lters delin-
eate when a species can be reported in a region and
determines the validity of an observation. 

The eBird database currently holds more than
100 million bird observations. These historical
records can be used to !lter unusual observations
that require review, but allow entry of expected
species within the expected times when species
should occur. These !lters automatically emerge

Articles

14 AI MAGAZINE

0

2%

4%

6%

8%

10%

12%

Jan 1 Feb 1 Mar 1 Apr 1 May 1 Jun 1 Jul 1

Week starting on...

Frequency

Aug 1 Sep 1 Oct 1 Nov 1 Dec 1

Figure 3. Frequency of Occurrence Results for Black-Billed Cuckoos (Coccyzus erythropthalmus) in Upstate New York. 

The y-axis is the frequency of eBird checklists that reported this species, and the x-axis is the date. Cuckoos arrive in early May and are detect-
ed at high frequencies because they are conspicuous and vocal during their mating season. But after they lay eggs, their detection proba-
bility drops dramatically. Most birds leave by mid-August.
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from historic eBird data. We have set the emergent
!lter at 10 percent of maximum annual frequency
of occurrence for every species across the United
States. This provides a consistent limit that allows
expected observations through the !lter but "ags
for review unusual records. For example, if a com-
mon species reaches a maximum frequency of 68
percent then the !lter would identify the day
when the !lter !rst crosses the 6.8 percent thresh-
old. Any record submitted on a date either prior or
after the threshold limit is "agged for review. Sim-
ilarly, if a rare species reaches an annual peak of 6.5
percent frequency, the threshold limit would be
.65 percent. Table 1 shows the number of "agged
records the emergent !lter identi!es for two coun-
ties in New York State, Jefferson County and Tomp-
kins County. These two counties were selected
because Jefferson County has relatively sparse year-
round data coverage, while Tompkins County is
one of the most active regions in eBird.

When the emergent !lter is triggered the sub-
mitter gets immediate feedback indicating that this
was an unusual observation (!gure 1). If submitters
con!rm that they made the observation, their
record is "agged for review, and one of the volun-
teer experts will review the observation. All
records, their "ags, and their review history are
retained in the eBird database.

What is most signi!cant about the emergent !l-
ter process is that it identi!es key periods during a
bird’s life history when its patterns of occurrence
change (for example during periods of migration
when the bird either arrives or departs a speci!c
region). Figure 4 shows those records that are
"agged for review by the emergent !lter for the 2
New York counties. The Chipping Sparrow (Spizel-
la passerina) is a common breeding bird in upstate
New York, but departs the region in the fall and

rarely occurs in winter. The emergent !lter for each
county is different, due to the variation in each
county’s respective historic data. The triangles and
circles are all records that are "agged for review by
the emergent !lter. Without the emergent !lter it
would be dif!cult to accurately identify arrival and
departure dates of when a bird appears in a coun-
ty. The threshold of occurrence established by the
emergent !lter allows the determination of arrival
and departure and then accurately "ags outlier
observation for further processing and review.

Can We Identify Observer Variability in
Their Ability to Detect Objects? 
eBird data are contributed by observers with a wide
range of expertise in identifying birds. At one
extreme observers with high identi!cation skill
levels contribute “professional grade” observations
to eBird, whereas at the other extreme less-skilled
participants contribute data of more variable qual-
ity. This interobserver variation must be taken into
account during analysis to determine if outlier
observations (that is, those observations that are
unusual) are true occurrences of a rare species or
the misidenti!cation of a common species. Since
eBird engages a signi!cant number of skilled
observers who are motivated to detect rare species
or are skilled in detecting elusive and cryptic
species, being able to automatically and accurately
distinguish their observations from those of less-
skilled observers is crucial. This is because skilled
observers are more likely to submit observations of
unusual species that get "agged by the regional
emergent !lters (that is, skilled birders like to !nd
rare birds). What is required is an objective meas-
ure of observer expertise that would automatically
classify unusual observations. 

To better understand observer variability in

 Tompkins County Jefferson County 

Total Observations 704,053 78,745 

Total Flagged 50,743 6,082 

Percent Flagged  7 8 

   

Total Flagged Expert 38,574 3,787 

Total Flagged Novice 12,170 2,295  

Percent Expert 5 5 

Percent Novice 2 3 

Table 1. Results of the Emergent Filter Process

Upper: Applied to two counties in upstate New York. Lower: The proportion of "agged records submitted by experts and
novices.



eBird we have applied a probabilistic machine-
learning approach called the occupancy-detection-
experience (ODE) model to provide an objective
measure of expertise for all eBird observers (Yu,
Wong, and Hutchinson 2010). The ODE model
extends existing ecological models that measure
the viability of a site as suitable habitat for a species
by predicting site occupancy by a particular
species. 

We can use the ODE model to distinguish the
difference between expert observers, who will !nd
more birds and are more likely to !nd them out-
side of the emergent !lter limits, and novice bird-
ers, who are more likely to misidentify common
birds. Table 1 (bottom) shows the total number of
observations by experts and novices that are
"agged. As expected, expert observers had a greater
number of "agged records, because of their
enhanced bird identi!cation skills and their desire
to !nd unusual birds. We can use the ODE model
results for experts in the data !ltering process by
automatically accepting their expert observations,
which dramatically reduces the total number of
"agged records that need to be reviewed (table 1
bottom). Finally, to test the accuracy of the ODE
model we analyzed all observations that fell out-
side of the emergent !lter for more than a dozen
species that easily confuse novices, and we show

results for the Chipping Sparrow (!gure 4). We did
this by engaging the current reviewers for the two
counties in New York, who con!rmed that the
ODE model properly categorized the observer as
either an expert or novice and validated more than
95 percent of the expert observations that fell out-
side of the emergent !lters.

We have found that the combination of the
emergent checklist !lters with the ODE model pro-
vides the best strategy for both improving data
quality and streamlining the review process in
eBird. This two-step approach, where the emergent
data !lters are used to identify outliers and the
ODE model allows us to identify valid outliers,
identi!es unusual records more accurately than
previous methods. The result is that we can now
provide accurate occurrence probabilities, which
are based on existing eBird data to allow the quick
identi!cation and classi!cation of outliers.

How Can We Address the Spatial Bias in
Citizen-Science Projects?
An inherent liability with many citizen-science
projects is that observation locations are highly
biased toward regions with high human popula-
tions. If this inequity is ignored, the spatial bias
will produce results in which regions with the
most data have excessive in"uence on the overall
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Figure 4. The Acceptable Date Range for the Occurrence of Chipping Sparrow in Two Counties in New York. 

Date ranges are the dark bars. All records that fall outside of the acceptable date range are plotted either as circles
(novices) or triangles (experts).
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result’s accuracy and regions with the least data are
underrepresented (Fink et al. 2010). We address
this issue using a mediated optimization strategy
to identify areas that if sampled would most
improve eBird spatial coverage and improve analy-
sis results.

Machine-learning algorithms can improve the
predictive performance of eBird by guiding the
sampling process. Consider the locations where
eBird observations were made in New York (!gure
5 top). It is clear that spatial sampling biases are
present as the majority of the observations come
from a small subset of geographical locations.
Active learning applied to eBird improves the
resulting predictive models by providing a context
to advise participants where to sample next. A !rst
strategy, as displayed in !gure 5 (bottom), has been
to aim for a uniform sampling coverage in geo-
graphical space by concentrating data collection
efforts to the areas of highest model uncertainty
and low density. This is accomplished through a
novel active learning approach that combines den-
sity information and information-theoretic meas-
ures (Dilkina, Lai, and Gomes 2011).

Already, our research in offering optimal sam-
pling strategies is paying off. We display maps sim-
ilar to !gure 5 (bottom) on the eBird website and

provide rewards for individuals who report check-
lists from undersampled regions. Eventually, such
sampling trajectories will be employed throughout
eBird to enhance the overall birding experience.
For example, it is straightforward to propose paths
that have the highest probability of detecting
birds. Hence one can envision educating observers
by proposing appropriate paths that train their
detection capabilities on speci!c species or increase
the probability of them recording a species they
have never observed before. 

Challenge 4: 
Species Distribution Models

The effective management and conservation of
biodiversity requires knowledge of a species’ geo-
graphic distribution throughout the year. Until the
inception of eBird, detailed data documenting a
species’ distribution were often not available for
the entire species’ range, particularly for widely
distributed species or species not closely studied.
eBird provides broad-scale survey data that allows
researchers to analyze and interpret a species’ dis-
tribution across broad spatial extents and for any
time of year. 

Figure 5. Locations and Results.

Top: Locations in New York where submissions were made to eBird in 2009. Bottom: Results showing areas with suf!cient data density (shad-
ed regions) and those requiring more data (white regions).



One major area of analysis of eBird data is to
explore the continentwide interannual patterns of
occurrence of North American birds. To do this we
have developed new spatiotemporal exploratory
models (STEMs) of species distributions that allow
us to automatically discover patterns in spatiotem-
poral data (Fink et al. 2010). 

We designed our statistical models speci!cally to
discover seasonally and regionally varying patterns
in eBird data. Spatiotemporal variation in habitat
associations is captured by combining a series of
separate submodels, each describing the distribu-
tion within a relatively small area and time win-
dow. The approach is semiparametric, yielding a
highly automated predictive methodology that
allows an analyst to produce accurate predictions
without requiring a detailed understanding of the
underlying dynamic processes. This makes STEMs
especially well suited for exploring distributional
dynamics arising from a variety of complex
dynamic ecological and anthropogenic processes.
STEMs can be used to study how spatial distribu-
tions of populations respond over time, both sea-
sonally (!gure 6) as well as to broad-scale changes
in their environments (that is, changes in land-use
patterns, pollution patterns, or climate change).

The STEM visualizations are now being
employed in a number of research and conserva-
tion initiatives. For example, bird distribution
information used in the 2011 State of the Birds
Report prepared for the U. S. Department of Interi-
or by the North American Bird Conservation Ini-
tiative (NABCI), was based on STEM model results.
Additionally, other federal (that is, Bureau of Land
Management and U.S. Forest Service) and non-
governmental agencies (that is, The Nature Con-
servancy) are using STEM distribution estimates to
study placement of wind farms for sustainable
energy production, identifying and prioritizing
areas for avian conservation.

Conclusion
In this article, we have demonstrated the imple-
mentation of a novel network that links machine-
learning methods and human observational capac-
ity to address several unique challenges inherent
in a broad-scale citizen-science project. By explor-
ing the synergies between mechanical computa-
tion and human computation, which we call a
human/computer learning network, we can lever-
age emerging technologies that integrate the speed
and scalability of AI with human computation to
solve computational problems that are currently
beyond the scope of existing AI algorithms.

eBird uses a broad-scale survey design to maxi-
mally engage volunteers to gather bird observations
following a basic protocol for data collection.
Designing such broad-scale surveys to maximize

the information obtained for use in analysis
depends on !nding the proper balance between
data quantity and data quality. If we can engage a
large number of participants to collect data through
eBird’s very basic protocols a suf!ciently large vol-
ume of data can be gathered and effectively ana-
lyzed. While eBird data has relatively lower per
datum information content, we have found that
eBird data can contain more information for broad-
scale distribution estimates than a smaller amount
of data with higher per datum quality. 

The appropriate design of data input and man-
agement procedures is critical to maintain the bal-
ance between data quantity and data quality in
broad-scale citizen-science projects. The addition-
al implementation of novel AI functionality pro-
vides incentives for encouraging surveyors to con-
tribute even more data while simultaneously
limiting errors and providing opportunities for
dramatically improved data review and validation
procedures.

Although our discussion has focused on one cit-
izen-science project, eBird, the general HCLN
approach is more widely applicable. Speci!cally, by
implementing an uncomplicated protocol through
web-based and wireless handheld devices and pro-
viding appropriate rewards for participation, citi-
zen-science projects can recruit large numbers of
participants to submit massive quantities of mean-
ingful data. By taking an adaptive learning
approach for both humans and computers we can
improve the quality and scope of the data that the
volunteers provide. Finally, new analysis tech-
niques that bridge the gap between parametric and
nonparametric processes provide extremely accu-
rate estimates of species occurrence at continental
levels.

In conclusion, broad-scale citizen-science proj-
ects can recruit extensive networks of volunteers,
who act as intelligent and trainable sensors in the
environment that gather observations across broad
spatial (for example, globally) and temporal (for
example, any time) extents. However, there is
much variability in the observations volunteers
make. Arti!cial Intelligence processes can dramat-
ically improve the quality of the observational data
by !ltering inputs using emergent !lters based on
aggregated historical data and on the observers’
expertise. By guiding the observers with immedi-
ate feedback on observation accuracy, the HCLN
process contributes to advancing expertise of the
observers, while simultaneously improving the
quality of the training data on which the machine-
learning processes make their decisions. The out-
come is improved data quality that can be used for
research and analysis.
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Figure 6. Maps Illustrating the Seasonal Patterns of Occurrence 
of the Indigo Bunting (Passerina cyanea) Throughout the United States. 

The maps illustrate the seasonal distribution estimates from a STEM during spring migration (top), the breeding season
(middle), and during fall migration (bottom). Indigo Buntings are neotropical migrants, wintering in Central America
and returning to the United States annually to breed. The occurrence maps show the probability of encountering the
species on an early morning 1-hour birding walk, with darker colors indicating higher probabilities. These maps provide
continental-scale distribution estimates that allow the quick assessment of the rate of arrival and departure from breed-
ing grounds, and over time will allow researchers to identify and quantify changes in bird populations. More STEM maps
can be viewed on the eBird website.2
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1. See ebird.org.
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