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Abstract

Multi-label learning concerns learning multiple, over-
lapping, and correlated classes. In this paper, we adapt
a recent structured prediction framework called HC-
Search for multi-label prediction problems. One of the
main advantages of this framework is that its training
is sensitive to the loss function, unlike the other multi-
label approaches that either assume a specific loss func-
tion or require a manual adaptation to each loss func-
tion. We empirically evaluate our instantiation of the
HC-Search framework along with many existing multi-
label learning algorithms on a variety of benchmarks
by employing diverse task loss functions. Our results
demonstrate that the performance of existing algorithms
tends to be very similar in most cases, and that theHC-
Search approach is comparable and often better than all
the other algorithms across different loss functions.

1 Introduction
We consider the problem of multi-label prediction, where
the learner needs to predict multiple labels for a given input
example (Tsoumakas, Zhang, and Zhou 2012). Multi-label
problems commonly arise in domains involving data such as
text, images, audio, and bio-informatics where instances can
fall into overlapping conceptual categories of interest. For
example, in document classification an input document can
belong to multiple topics and in image classification an input
image can contain multiple scene properties and objects of
interest.

An important aspect of most multi-label problems is that
the individual output labels are not independent, but rather
are correlated in various ways. One of the challenges in
multi-label prediction is to exploit this label correlation
in order to improve accuracy compared to predicting la-
bels independently. Unfortunately, existing approaches for
multi-label prediction that consider label correlation suffer
from the intractable problem of making optimal predictions
(inference) (Dembczynski, Cheng, and Hüllermeier 2010;
Ghamrawi and McCallum 2005; Zhang and Zhang 2010;
Guo and Gu 2011; Petterson and Caetano 2011). Another
challenge is to automatically adapt the learning approach
to the task loss function that is most appropriate for the
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real-world application at hand. However, most approaches
are designed to minimize a single multi-label loss function
(Elisseeff and Weston 2001; Read et al. 2011; Fürnkranz
et al. 2008). There are existing frameworks for multi-label
prediction that can handle varying loss functions, but un-
fortunately they are non-trivial to adapt for a new task loss
based on the needs of the application. For example, Proba-
bilistic Classifier Chains (PCC) require a Bayes optimal in-
ference rule (Dembczynski, Cheng, and Hüllermeier 2010)
and Structured Support Vector Machines (SSVMs) require
a loss-augmented inference routine for the given task loss
(Tsochantaridis et al. 2005).

In this paper, we treat multi-label learning as a special
case of structured-output prediction (SP), where each input
x is mapped to a binary vector y (i.e., a structured output)
that indicates the set of labels predicted for x. The main
contribution of this paper is to investigate a simple frame-
work for multi-label prediction called Multi-Label Search
(MLS) that makes joint predictions without suffering from
intractability of the inference problem, and can be easily
adapted to optimize arbitrary loss functions1. The frame-
work is based on instantiating a recent approach to struc-
tured prediction called HC-Search (Doppa, Fern, and Tade-
palli 2013) to multi-label learning.

The MLS approach first defines a generic combinatorial
search space over all possible multi-label outputs. Next,
a search procedure (e.g. breadth-first or greedy search) is
specified, which traverses the output space with the goal of
uncovering high-quality outputs for a given input x. Impor-
tantly, for this search to be effective, it will often be neces-
sary to guide it using a learned heuristic. Finally a learned
cost function is used to score the set of outputs uncovered
by the search procedure, and the least-cost one is returned.
The effectiveness of the MLS approach depends on: 1) the
ability of the search to uncover good outputs for given in-
puts, which for difficult problems will depend on the quality
of the search heuristicH, and 2) the ability of the cost func-
tion C to select the best of those outputs. We employ existing
learning approaches proposed within the HC-Search frame-
work for learning effective heuristics and cost functions for

1In a concurrent work to ours, the Condensed Filter Tree (CFT)
algorithm was proposed for training loss-sensitive multi-label clas-
sifiers (Li and Lin 2014).



these purposes as they are shown to be very effective in prac-
tice.

Our second contribution is to conduct a broad evalua-
tion of several existing multi-label learning algorithms along
with our MLS approach on a variety of benchmarks by em-
ploying diverse task loss functions. Our results demonstrate
that the performance of existing algorithms tends to be very
similar in most cases, and that our MLS approach is com-
parable and often better than all the other algorithms across
different loss functions. Our results also identify particular
ways where our approach can be improved, pointing to fu-
ture work.

2 Related Work
Typical approaches to multi-label learning decompose the
problem into a series of independent binary classification
problems, and employ a thresholding or ranking scheme to
make predictions (Elisseeff and Weston 2001; Read et al.
2011; Fürnkranz et al. 2008; Tsoumakas, Katakis, and Vla-
havas 2010). The Binary Relevance (BR) method ignores
correlations between output labels and learns one indepen-
dent classifier for every label (Tsoumakas, Katakis, and Vla-
havas 2010). The Classifier Chain (CC) (Read et al. 2011)
approach learns one classifier for every label based on in-
put x and the assignments to previous labels in a fixed or-
dering over labels. CC leverages the interdependencies be-
tween output labels to some extent, but it suffers from two
major problems: 1) It is hard to determine a good order-
ing of the labels in the chain, 2) Errors can propagate from
earlier predictions to later ones (Ross and Bagnell 2010;
Hal Daumé III, Langford, and Marcu 2009; Ross, Gordon,
and Bagnell 2011). To address some of these issues, re-
searchers have employed ensembles of chains (ECC), beam
search (Kumar et al. 2013) and monte carlo search (MCC)
(Read, Martino, and Luengo 2013) techniques to find a good
ordering and for predicting the labels. All these label decom-
position approaches try to optimize the Hamming loss.

Output coding methods try to exploit the correlations be-
tween output labels by coding them using a different set of
latent classes. There are several output coding techniques for
multi-label learning, including coding based on compressed
sensing (Hsu et al. 2009), Principal Component Analysis
(PCA) (Tai and Lin 2012), and Canonical Correlation Anal-
ysis (CCA) (Zhang and Schneider 2011). These methods ei-
ther try to find a discriminative set of codes ignoring pre-
dictability, or vice versa. The recent max-margin output cod-
ing method (Zhang and Schneider 2012) tries to overcome
some of the drawbacks of previous coding approaches by
trying to find a set of codes that are both discriminative and
predictable via a max-margin formulation. However, their
formulation poses the problem of finding these codes as an
intractable optimization problem for which they propose an
approximate solution. These output coding approaches opti-
mize a fixed, but unknown loss function.

Graphical modeling approaches including Conditional
Random Fields (CML) (Ghamrawi and McCallum 2005),
Bayesian Networks (LEAD) (Zhang and Zhang 2010), and
Conditional Dependency Networks (CDN) (Guo and Gu
2011) try to capture label dependencies, but unfortunately

suffer from the intractability of the exact inference problem
due to the high tree-width graphical structure. It is possi-
ble to employ approximate inference methods (e.g., Loopy
Belief Propagation and MCMC), with the associated risk of
converging to local optima. These methods try to optimize
the structural log loss or some variant of it.

Probablistic Classifier Chains (PCC) (Dembczynski,
Cheng, and Hüllermeier 2010) estimate the conditional
probablity of every possible label set for an input instance,
and employ a Bayes optimal inference rule to optimize the
given task loss function. However, the PCC framework suf-
fers from two problems: 1) It is hard to accurately esti-
mate the conditional probabilities, and 2) It is non-trivial
to come up with the inference rule for a new loss function.
Exact inference rules exist for limited loss functions: Ham-
ming loss, Rank loss, and F1 loss (Dembczynski, Cheng,
and Hüllermeier 2010; Dembczynski et al. 2011; Dem-
bczynski, Kotlowski, and Hüllermeier 2012; Dembczyn-
ski et al. 2013). Approximate inference methods can be
employed to optimize the Exact-Match loss (Dembczyn-
ski, Waegeman, and Hüllermeier 2012; Kumar et al. 2013;
Read, Martino, and Luengo 2013).

The Structured Support Vector Machines (SSVMs)
(Tsochantaridis et al. 2005) framework allows varying loss
functions, but requires a loss-augmented inference routine
for the given task loss function, which is non-trivial if the
loss function is non-decomposable. Existing multi-label pre-
diction approaches based on this framework either resort
to approximate inference or some form of convex relax-
ation for non-decomposable losses (Hariharan et al. 2010;
Petterson and Caetano 2010; 2011).

Label powerset (LP) methods reduce the multi-label
learning problem to a multi-class classification problem, and
optimize the Exact-Match loss. These approaches are very
inefficient for training and testing. RAndom K-labELsets
(RAKEL) is a representative approach of LP methods
(Tsoumakas and Vlahavas 2007). Some recent work has pro-
posed a variant of RAKEL to optimize weighted Hamming
loss (Lo et al. 2011). ML-kNN (Zhang and Zhou 2007) is an
extension of the traditional k-Nearest Neighbor classifica-
tion algorithm for multi-label prediction. It is very expensive
to make predictions with ML-kNN for large-scale training
data.

3 Multi-Label Search Framework
In this section, we first describe the formal problem setup.
Next, we give an overview of theHC-Search framework fol-
lowed by our instantiation for multi-label prediction prob-
lems and then describe the learning algorithms.

3.1 Problem Setup
A multi-label prediction problem specifies a space of inputs
X , where each input x ∈ X can be represented by a d dimen-
sional feature vector; a space of outputs Y , where each out-
put y = (y1, y2, · · · , yT ) ∈ Y is a binary vector of length T ;
and a non-negative loss function L : X ×Y×Y 7→ <+ such
that L(x, y′, y∗) is the loss associated with labeling a partic-
ular input x by output y′ when the true output is y∗. We are



provided with a training set of input-output pairs {(x, y∗)}
drawn from an unknown target distribution D. The goal is
to return a function/predictor from inputs to outputs whose
predicted outputs have low expected loss with respect to the
distribution D.

3.2 Overview of theHC-Search Framework
TheHC-Search framework for structured prediction is based
on search in the output space Y and is parameterized by the
following elements: 1) a search space So, where each state
in the search space consists of an input-output pair (x, y)
where y represents the potential output for the input x, 2) a
time-bounded search strategy A (e.g., depth-limited greedy
search), 3) a learned heuristic function H : X × Y 7→ <
in cases where the search strategy requires one, and 4) a
learned cost function C : X × Y 7→ <.

Given all of these elements and an input x, a prediction
is made by first running the search procedure A (guided by
H when appropriate), for a specified time bound τ . During
the search a set of states is traversed, where each state rep-
resents a potential output for x. The cost function is em-
ployed to score each such output and the least-cost output
is returned as the predicted label for x. The effectiveness
of this approach depends on the quality of the search space
(i.e., expected depth at which the target outputs can be lo-
cated), the ability of the search procedure and heuristic func-
tion to guide the search to uncover high-quality outputs, and
the quality of the cost function in terms of correctly scoring
those outputs.

3.3 Multi-Label Search (MLS)
To instantiate theHC-Search framework for multi-label pre-
diction, we need to specify effective search spaces and
search strategies that are appropriate for different multi-label
prediction problems.
Search Space. The states of our multi-label search space
correspond to input-output pairs (x, y), representing the pos-
sibility of predicting y as the multi-label output for x. In gen-
eral, such a search space is defined in terms of two functions:
1) An initial state function I that takes an input x and returns
an initial search state (x, y), and 2) A successor function S
that takes a state as input and returns a set of child states.
Given an input x, the search always begins at state I(x) and
then traverses the space by following paths allowed by the
successor function.

In this paper, we employ a simple search space for multi-
label problems, which we call the Flipbit-null space. In par-
ticular, the initial state function I is defined as I(x) =
(x, null), where null is the zero vector indicating that no la-
bels are present. The successor function S((x, y)) returns all
states of the form (x, y′), where y′ differs from y in exactly
one label position, i.e. the hamming distance between y and
y′ is 1. Thus, individual search steps in this space can be
viewed as picking a particular output label and flipping its
value. This space is effectively the search space underlying
Gibbs sampling. Clearly the search space is complete, since
for any input x it is possible to reach any possible output
starting from the initial state.

Search Space Quality. The quality of a search space can
be understood in terms of the expected amount of search
needed to uncover the correct output y∗, which often in-
creases monotonically with the expected depth of the target
in the search space. In particular, for a given input-output
pair (x, y∗), the target depth d(x, y∗) is defined as the min-
imum depth at which we can find a state corresponding to
the target output y∗. Clearly according to this definition, the
expected target depth of the Flipbit-null space is equal to the
expected number of non-zero labels. That is, for the Flipbit-
null space we have,

d = E(x,y∗)∼D d (x, y∗)

= E(x,y∗)∼D |y∗|1 (1)

Thus, the expected target depth of the Flipbit-null space is
related to the average sparseness of the label vectors. We
observe that for several standard benchmarks the outputs are
very sparse2 (80 perecent of the benchmarks have sparsity
less than 4), which makes the above search space very ef-
fective. To the best of our knowledge, we are not aware of
any multi-label approach that explicitly exploits the sparsity
property of multi-label problems.

Other Search Space Choices. One possible way to de-
crease the expected target depth, if necessary, would be to
define more sophisticated search spaces that are tuned for
particular types of multi-label problems. As a simple exam-
ple, if the number of zero entries in the outputs is small,
then it would be more effective to define the initial state of
the Flipbit space to be the vector of all ones. The expected
target depth would then be the expected number of zero out-
put labels. Another way to reduce the expected target depth
would be to use an existing multi-label approach P (e.g.,
Binary Relevance) to produce the initial state. The result-
ing Flipbit space can then be viewed as biasing the search
toward this solution (e.g., see (Lam et al. 2013)). In this
case, the expected target depth of the search space would
be equal to the expected Hamming error of P on the multi-
label problem. Finally, even more sophisticated spaces such
as the Limited Discrepancy Search space (Doppa, Fern, and
Tadepalli 2012) defined in terms of a greedy classifier chain
or a variant of its sparse version (Doppa, Fern, and Tadepalli
2014b) could be employed.
Search Strategies. Recall that in our MLS approach, the
role of the search procedure is to uncover high-quality out-
puts. We can consider depth-bounded breadth-first search
(BFS), but unfortunately BFS will not be practical for a
large depth k and/or a large number of output labels T .
Even when BFS is practical, it generates a large number
of outputs (T k) that will make the cost function learn-
ing problem harder. Therefore, in this paper, we consider
depth-limited greedy search guided by a (learned) heuris-
tic function H as our search strategy. Given an input x,
greedy search traverses a path of user specified length k
through the search space, at each point selecting the succes-
sor state that looks best according to the heuristic. In partic-
ular, if si is the state at search step i, greedy search selects
si+1 = arg mins∈S(si)H(s), where s0 = I(x). The time

2http://mulan.sourceforge.net/datasets.html



complexity of generating this sequence is O(k · T ), which
makes it much more practical than BFS for larger values
of k. The effectiveness of greedy search is determined by
how well H guides the search toward generating state se-
quences that contain high quality outputs. It is possible to
consider other heuristic search strategies, such as best-first
search and beam-search. However, in our experience so far,
greedy search has proven sufficient.

3.4 Learning Algorithms
We first describe the loss decomposition of the HC-Search
approach along with its staged learning. Next, we briefly talk
about the heuristic and cost function learning algorithms in
the context of greedy search. In this work, we focus on learn-
ing linear H and C of the form H(x, y) = wH · ΦH(x,y)
and C(x, y) = wC · ΦC(x,y), where ΦH and ΦC are feature
functions that compute the feature vectors for H and C re-
spectively, and wH and wC stand for their weights that will
be learned from the training data.
Loss Decomposition and Staged Learning. For any heuris-
tic function H and cost function C, the overall loss of the
HC-Search approach E (H, C) can be decomposed into the
loss due to H not being able to generate the target output
(generation loss εH), and the additional loss due to C not be-
ing able to score the best outputs generated by H correctly
(selection loss εC|H) . The loss decomposition can be math-
ematically expressed as follows:

E (H, C) = E(x,y∗)∼D L (x, y∗H, y
∗)︸ ︷︷ ︸

εH

+

E(x,y∗)∼D L (x, ŷ, y∗)− L (x, y∗H, y
∗)︸ ︷︷ ︸

εC|H

where y∗H is the best output that is generated by the search
guided by H and ŷ is the predicted output. The HC-Search
approach performs a staged-learning by first learning a
heuristic to H to minimize the generation loss εH, and then
the cost function C is learned by minimizing the selection
loss εC|H, given the learnedH.
Heuristic Learning. The heuristic functionH is trained via
imitation learning. For a given training time bound τmax and
task loss function L, we perform greedy search with the loss
function used as an oracle heuristic on every training exam-
ple (x, y∗) (ties are broken randomly) and generate training
data for imitation (see Algorithm 1). The imitation exam-
ple Rt at each search step t consists of one ranking exam-
ple for every candidate state s ∈ S(st−1) \ st such that
H(x, yt) < H(x, y), where (x, yt) and (x, y) correspond
to the input-output pairs associated with states st and s re-
spectively. The aggregate set of imitation examples collected
over all the training data is then given to a rank learner (e.g.,
Perceptron or SVM-Rank) to learn the parameters ofH.
Cost Function Learning. The cost function C is trained
via cross-validation to avoid over-fitting (see (Doppa, Fern,
and Tadepalli 2014a) for full details). We divide the train-
ing data into k folds and learn k different heuristics, where
each heuristic function Hi is learned using the data from all
the folds excluding the ith fold. We generate ranking exam-
ples for cost function learning using each heuristic function

Hi on the data it was not trained on. Specifically, we per-
form greedy search guided by Hi to generate a set of out-
puts YHi

(x), and generate ranking examples for any pair
of outputs (ybest, y) ∈ Ybest × YHi

(x) \ Ybest such that
C(x, ybest) < C(x, y), where Ybest is the set of all best loss
outputs. We give the aggregate set of ranking examples to a
rank learner to learn the cost function C.

Algorithm 1 Heuristic Function Learning for Greedy Search
Input: D = Training data, (I, S) = Search space, L = Loss func-
tion, τmax = no. of training steps
1: Initialize the set of ranking examplesR = ∅
2: for each training example (x, y∗) ∈ D do
3: s0 ← I(x) // initial state
4: for each search step t = 1 to τmax do
5: Generate example Rt to imitate this search step
6: Aggregate training data:R = R∪Rt

7: st ← argmins∈S(st−1)
L(s) // oracle search

8: end for
9: end for

10: H = Rank-Learner(R)
11: return heuristic functionH

4 Empirical Results
In this section, we evaluate our MLS approach along with
several existing multi-label algorithms on a variety of bench-
marks and evaluation measures.

4.1 Datasets
We employ nine benchmark3 datasets for our evaluation. We
selected these datasets based on the diversity of domains
(text, images, audio and bio-informatics) and their popu-
larity within the multi-label learning community. Table 2
presents the properties of different datasets. Ten percent of
the training data were used to tune the hyper-parameters.

4.2 Experimental Setup
Evaluation Measures. We consider four diverse loss func-
tions: Hamming loss, Exact-Match (0/1) loss, F1 loss, and
Accuracy loss. F1 and Accuracy losses do not decompose
over individual labels. They are defined as follows: F1 loss
= 1 - 2‖ŷ∩y∗‖1

‖ŷ‖1+‖y∗‖1
; Accuracy loss = 1 - ‖ŷ∩y

∗‖1
‖ŷ∪y∗‖1

, where ŷ is
the predicted output and y∗ is the correct output. When both
the predicted labels and ground-truth labels are zero vectors,
then we consider the loss to be zero for both F1 and Accu-
racy unlike existing software packages including Mulan and
Meka4 that consider the loss to be one in this case.
MLS Approach. We employ the simple Flipbit-null space
and greedy search as described in Section 3. We use unary
and pair-wise potential features for our heuristic and cost
function representation, i.e., these functions are represented
asw ·Φ(x, y), wherew is the parameter vector to be learned,
and Φ(x, y) is a feature vector that contains indicator fea-
tures for the activation levels of all label pairs and fea-
tures that are the cross product of the label space and in-
put features composing x. We estimate the expected target

3http://mulan.sourceforge.net/datasets.html
4http://meka.sourceforge.net/



ALGORITHMS Scene Emotions Medical Genbase Yeast Enron LLog Slashdot Tmc2007

a. Hamming Accuracy Results
BR 86.90 77.10 98.50 99.80 78.30 94.00 97.70 94.50 94.70
CC 88.70 76.80 98.60 99.90 78.50 95.10 98.40 94.50 94.60
ECC 89.00 78.40 98.30 99.90 78.50 94.30 98.40 94.70 94.70
M2CC 89.80 78.50 98.30 99.90 78.10 94.50 98.50 94.90 94.60
CLR 89.10 78.40 97.90 96.60 77.00 94.00 97.10 92.70 94.50
CDN 89.40 80.30 98.40 99.60 78.10 94.70 97.70 94.60 94.60
CCA 88.59 79.05 97.79 99.19 79.05 93.66 95.10 94.60 94.22
PIR 87.81 67.99 98.79 99.93 77.18 94.66 97.05 94.11 94.34
SML 86.32 78.64 98.83 99.04 78.64 94.80 99.60 95.28 94.01
RML 88.11 79.04 98.83 99.89 79.71 95.25 98.46 95.48 94.68
DecL 90.12 81.89 98.79 99.80 79.67 95.40 98.40 95.22 93.91
MLS 90.41 82.75 98.83 99.80 80.72 95.60 98.50 95.63 94.10

b. Instance-based F1 Results
BR 52.60 60.20 63.90 98.70 63.20 53.90 36.00 46.20 71.80
CC 59.10 57.50 64.00 99.40 63.20 53.30 26.50 44.90 70.30
ECC 68.00 62.60 65.30 99.40 64.60 59.10 32.20 50.20 72.70
M2CC 68.20 63.20 65.40 99.40 64.90 59.10 32.30 50.30 72.80
CLR 62.20 66.30 66.20 70.70 63.80 56.50 22.70 46.60 70.80
CDN 63.20 61.40 68.90 97.80 64.00 58.50 36.60 53.10 71.30
CCA 66.43 63.27 49.60 98.60 61.64 53.83 25.80 48.00 69.53
PIR 74.45 60.92 80.17 99.41 65.47 61.14 38.95 57.55 73.73
SML 68.50 64.32 68.34 99.62 64.32 57.46 34.95 55.73 71.63
RML 74.17 64.83 80.73 98.80 63.18 57.79 35.97 51.30 71.34
DecL 73.76 65.29 78.02 97.89 63.46 61.19 37.52 54.67 69.08
MLS 75.89 66.17 78.19 98.12 63.78 62.34 39.76 57.98 69.17

c. Instance-based Accuracy Results
BR 48.50 52.30 61.50 98.00 52.30 44.10 27.80 41.90 62.30
CC 55.90 49.70 61.00 99.10 51.80 43.00 25.30 42.00 61.70
ECC 63.40 54.80 62.20 99.10 53.70 47.00 29.40 45.70 63.50
M2CC 63.70 55.00 62.90 99.10 53.40 47.10 29.50 46.00 63.70
CLR 62.50 56.80 58.10 56.10 51.30 42.70 17.20 38.10 60.00
CDN 61.50 56.80 64.70 96.60 52.80 47.00 32.30 48.40 62.10
CCA 62.12 55.40 60.10 98.20 50.82 42.90 19.60 43.30 62.38
PIR 67.87 49.75 76.33 99.16 53.92 49.16 34.42 52.87 63.76
SML 63.65 52.38 64.03 98.42 52.38 48.08 33.49 43.92 63.77
RML 67.23 53.91 75.90 98.17 52.41 47.98 33.16 47.27 63.05
DecL 66.19 54.17 74.23 97.91 50.45 49.87 35.78 48.77 58.56
MLS 69.12 57.89 74.98 98.34 51.23 51.21 36.67 52.85 59.76

d. Exact-Match Results
BR 45.90 24.80 46.20 95.50 15.60 10.90 21.90 31.50 32.20
CC 47.50 25.20 47.80 98.00 19.20 12.50 22.60 32.00 34.00
ECC 52.00 28.20 43.60 98.00 19.60 11.90 22.40 32.50 33.50
M2CC 59.63 32.20 43.90 98.00 21.50 13.50 24.70 33.20 34.00
CLR 58.30 28.70 33.60 11.10 5.80 2.80 2.70 13.90 25.10
CDN 57.60 32.20 52.20 94.00 17.00 12.60 22.40 34.10 32.40
CCA 59.63 30.20 22.48 97.99 20.39 15.70 15.07 32.00 31.04
PIR 50.08 19.80 64.65 98.49 14.29 13.64 23.63 38.80 30.73
SML 52.84 30.06 62.17 91.51 15.05 12.15 24.23 35.03 31.75
RML 47.32 25.74 62.94 91.45 13.63 12.43 24.48 35.09 30.44
DecL 59.00 31.89 63.76 96.81 15.12 12.11 20.81 37.89 29.98
MLS 58.10 31.18 63.46 96.75 14.30 12.71 19.12 38.13 28.29

Table 1: Performance of different multi-label prediction algorithms.



Dataset Domain #TR #TS #F #L E[d]
Scene image 1211 1196 294 6 1.07

Emotions music 391 202 72 6 1.86
Medical text 333 645 1449 45 1.24
Genbase biology 463 199 1185 27 1.25

Yeast biology 1500 917 103 14 4.23
Enron text 1123 579 1001 53 3.37
LLog text 876 584 1004 75 1.18

Slashdot text 2269 1513 1079 22 1.18
Tmc2007 text 21519 7077 500 22 2.15

Table 2: Characteristics of the datasets: the number of train-
ing (#TR) and testing (#TS) examples; number of features
(#F); number of labels (#L); and the expected target depth
of our Flipbit-null space (E[d]).

depth E[d] of the Flipbit-null space for each dataset and use
2∗dE[d]e steps for training and testing the heuristic function
noting that we didn’t see any improvements with larger time-
bounds. For cost function learning, we experimented with 3
folds and 5 folds, but larger folds didn’t help much. We em-
ploy SVM-Rank (Joachims 2006) as our base rank learner
for both heuristic and cost function learning. The C param-
eter was tuned using the validation set. The MLS approach
cannot work for Exact-Match loss5, so we present the Exact-
Match results by training with Hamming loss. In all other
cases, we train for the given task loss function. Our base
rank learner did not scale to the Tmc2007 dataset, so we
performed our training on a subset of 5000 training exam-
ples.
Baseline Methods. Our baselines include Binary Relevance
BR (Tsoumakas, Katakis, and Vlahavas 2010); Classifier
Chain with greedy inference CC (Read et al. 2011); Ensem-
ble of Classifier Chains ECC (Read et al. 2011); Monte Carlo
optimization of Classifier Chains M2CC (Read, Martino, and
Luengo 2013); Calibrated Label Ranking CLR (Fürnkranz et
al. 2008); Conditional Dependency Networks CDN (Guo and
Gu 2011); Canonical Correlation Analysis CCA (Zhang and
Schneider 2011); Plug-in-Rule approach PIR (Dembczyn-
ski et al. 2013); Submodular Multi-Label prediction SML
(Petterson and Caetano 2011); Reverse Multi-Label predic-
tion RML (Petterson and Caetano 2010); and Decomposed
Learning DecL (Samdani and Roth 2012). The last method,
DecL, is a variant of our MLS approach that employs a dif-
ferent cost function learning algorithm by trying to rank the
correct output y∗ higher than all the outputs with a hamming
distance of at most k from y∗. We employed the Meka pack-
age to run BR, CC, ECC, M2CC, CLR, and CDN. We ran
the code provided by the authors for CCA6, PIR7, SML and
RML8.

For the methods that require a base classifier, we em-
ployed logistic regression with L2 regularization. The reg-
ularization parameter was tuned via 5-fold cross validation.
We employed the natural ordering of labels for CC and

5We cannot differentiate between the outputs with loss one.
6http://www.cs.cmu.edu/∼yizhang1/files/AISTAT2011 Code.zip
7https://github.com/multi-label-classification/PCC
8http://users.cecs.anu.edu.au/∼jpetterson/

20 random orderings for ECC. We used 10 iterations for
learning the ordering, and 100 iterations for inference with
M2CC. The parameters of CCA were tuned as described in
the original paper. For PIR, we tuned the hyper-parameter λ
via 5-fold cross-validation and report the results with their
exact algorithm (EFP). The hyper-parameters for RML (λ),
and SML (λ, C) were tuned based on the validation set. For
DecL, we employed the largest value of k that was practical
for training the cost function.

4.3 Results
Table 1 shows the accuracy results (higher is better) of dif-
ferent multi-label approaches with different evaluation mea-
sures. We can make several interesting observations from
these results. First, the performance of several algorithms
tend to be very similar in most cases. Second, our MLS ap-
proach performs comparably and often better than all other
algorithms for all evaluation measures other than the Exact-
Match accuracy, which MLS cannot optimize. The results
of MLS for Tmc2007 are competetive with other methods
even though MLS was trained only on one-fourth of the
training data. Third, ECC performs better than CC as one
would expect, and M2CC significantly improves over both
CC and ECC showing the benefit of learning the ordering
and performing a more elaborate search instead of greedy
search. Fourth, PIR performs comparably or better than all
other methods on F1 accuracy across all the datasets exclud-
ing Emotions. This behavior is expected because PIR is de-
signed to optimize F1 loss.

Due to the lack of space, we do not provide the error de-
composition results for our MLS approach, but we would
like to mention that the generation error for most datasets is
close to zero, which means that most of our error is coming
from the cost function, i.e., even though the heuristic is able
to generate good outputs, cost function is not able to score
them properly. Therefore, it would be productive to consider
more powerful rank learners9 (e.g., Regression trees (Mo-
han, Chen, and Weinberger 2011)) for cost function learning
to improve the results.

5 Summary and Future Work
We introduced the Multi-Label Search (MLS) approach by
adapting the HC-Search framework for multi-label predic-
tion problems. MLS can automatically adapt its training for
a given task loss function, and can jointly predict all the la-
bels without suffering from the intractability of inference.
We show that the MLS approach gives comparable or better
results than existing multi-label approaches across several
benchmarks and diverse loss functions. Future work should
tackle the problem of designing an appropriate search space
for the problem at hand, and the problem of learning in
the context of more sophisticated search strategies when the
expected depth of the search space is high and the greedy
search is not effective.
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9http://sourceforge.net/p/lemur/wiki/RankLib/
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Fürnkranz, J.; Hüllermeier, E.; Mencı́a, E. L.; and Brinker,
K. 2008. Multilabel classification via calibrated label rank-
ing. Machine Learning 73(2):133–153.
Ghamrawi, N., and McCallum, A. 2005. Collective multi-
label classification. In CIKM, 195–200.
Guo, Y., and Gu, S. 2011. Multi-label classification using
conditional dependency networks. In IJCAI, 1300–1305.
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