A Latent Variable Model for Discovering Bird Species Commonly Misidentified by
Citizen Scientists

Jun Yu and Rebecca A. Hutchinson and Weng-Keen Wong
Department of EECS
Oregon State University
{yuju, rah, wong} @eecs.orst.edu

Abstract

Data quality is a common source of concern for large-
scale citizen science projects like eBird. In the case of
eBird, a major cause of poor quality data is the misiden-
tification of bird species by inexperienced contribu-
tors. A proactive approach for improving data quality
is to discover commonly misidentified bird species and
to teach inexperienced birders the differences between
these species. To accomplish this goal, we develop a la-
tent variable graphical model that can identify groups
of bird species that are often confused for each other
by eBird participants. Our model is a multi-species ex-
tension of the classic occupancy-detection model in the
ecology literature. This multi-species extension requires
a structure learning step as well as a computationally
expensive parameter learning stage which we make effi-
cient through a variational approximation. We show that
our model can not only discover groups of misidentified
species, but by including these misidentifications in the
model, it can also achieve more accurate predictions of
both species occupancy and detection.

Introduction

Species distribution models (SDMs) estimate the pattern of
species occurrence on a landscape by correlating observa-
tions of the species with environmental features. SDMs play
an important role in modeling biodiversity and designing
wildlife reserves (Leathwick et al. 2008). Learning accurate
SDMs over a broad spatial and temporal scale requires large
amounts of observational data to be collected. This scale of
data collection is viable through citizen science, in which
the general public is encouraged to contribute data to scien-
tific studies (Cohn 2008). For example, eBird (Sullivan et al.
2009; Kelling et al. 2013) is one of the largest citizen science
projects in existence, relying on a global human sensor net-
work of bird-watchers to report their observations of birds,
identified by species, to a centralized database.

Although citizen scientists can contribute large quanti-
ties of data, data quality can be a concern (Hochachka et
al. 2012). In eBird, individuals vary greatly in their ability
to identify organisms by species. Inexperienced observers
either overlook or misidentify certain species and thus add
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noise to the data. For example, inexperienced birders often
confuse house finches with purple finches, which are simi-
lar in appearance, but occupy different habitats. One way to
reduce noise is to identify and remove the invalid observa-
tions using a data verification model (Yu et al. 2012). A more
proactive way is to discover which species are often con-
fused for each other and to teach inexperienced observers to
correctly identify species them.

To discover groups of misidentified species, we extend
the classic single species Occupancy-Detection (OD) model
(MacKenzie et al. 2002) from the ecology literature to han-
dle multiple species simultaneously. The OD model is an
SDM that separates the biological process of occupancy,
which is a latent variable describing whether a species lives
at a site, from the observational process of defection, which
describes whether a species will be observed at a site it oc-
cupies. Separating occupancy from detection allows the OD
model to account for false negatives, which are common in
species data since many species are secretive and hard to de-
tect on surveys. The OD model was also developed under
the assumption that data were collected by expert field bi-
ologists and thus assumes that there are no false positives
in the data. Citizen science data, however, is collected less
rigorously, making this assumption questionable. Previous
work has incorporated the possibility of false positives into
the OD model (Royle and Link 2006). More recent work
has modeled false positives in the citizen science context by
distinguishing between experts and novices in the detection
process (Yu, Wong, and Hutchinson 2010).

In this work, we introduce the Multi-Species Occupancy-
Detection (MSOD) model, which models the occurrence
pattern of multiple species simultaneously and treats false
positives for a species as arising from misidentifications of
other species. Modeling occupancy and detection patterns
for multiple species jointly has two important advantages.
Firstly, the patterns of species confusion that are discov-
ered can be used to teach inexperienced observers and im-
prove their skills. Secondly, explicitly modeling detection
errors due to observer misidentification between species can
improve the estimates of the occupancy patterns of these
species. Since the latent occupancy is the true variable of in-
terest, improvements in our ability to account for the detec-
tion process allow for more accurate ecological conclusions
to be drawn. In our study, we show that explicitly modeling



observer confusion between species not only helps to dis-
cover groups of misidentified species, but also improves the
estimates of the occupancy patterns of those species.

Occupancy-Detection model

In species distribution modeling, the primary goal is to es-
timate a habitat model for the species of interest, but the
true occupancy status of the study sites is typically ob-
served only indirectly. Figure 1 shows a plate diagram of the
single-species Occupancy-Detection (OD) model, proposed
by MacKenzie et al. (MacKenzie et al. 2002) to separate
the detection process from occupancy. The outer plate rep-
resents IV sites. The variable X; denotes a vector of features
that influence the occupancy pattern for the species (e.g. land
cover type) and Z; € {0, 1} denotes the true occupancy sta-
tus of site . Site ¢ is surveyed T; times, while its occupancy
status remains constant. The variable W, is a vector of fea-
tures that affect the detectability of the species (e.g. time of
day) and Y;; € {0, 1} indicates whether the species was de-
tected (Y;; = 1) on visit ¢.
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Figure 1: The Occupancy-Detection model.

The structure of the OD model corresponds to the follow-
ing generative process. For each site ¢, we compute the prob-
ability o; that site i is occupied as 0; = o(X; - ), where
o(+) is the logistic function. Then, the true occupancy Z; is
generated by drawing from a Bernoulli distribution with pa-
rameter o;. Next, the site is visited 7; times. At each visit
t, we compute the detection probability d;; = o(Wy; - 3).
Finally, the observation Y;; is generated by drawing from a
Bernoulli distribution with parameter Z;d;;. If the site is not
occupied (Z; = 0), then Y;; = 0 with probability 1, but if
Z; =1, then Y;; = 1 with probability d;;. This encodes the
assumption that there are no false positives in the data.

Multi-Species Occupancy-Detection model

The Multi-Species Occupancy-Detection (MSOD) model
consists of observed (Y') and latent binary variables (Z) for
every species as shown using plate notation in Figure 2. Z;
denotes the occupancy status of species s at site ¢ and Yj;4
denotes the observation of species s at site ¢ on visit ¢. Struc-
turally, the solid arrows in the plate diagram are fixed and
known in advance; the dotted arrows are candidates to be
added by the learning algorithm. The joint probability distri-
bution for the MSOD model is given below where Z;. refers
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Figure 2: The Multi-Species Occupancy-Detection model.

to all the S latent occupancy variables at site i.
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Parameterization

In the MSOD model, the species-specific occupancy mod-
els (P(Z;.|X;) for each r) are parameterized as in the OD
model, where Z;. ~ Bernoulli(o;-) and 0;, = o(X; -
a,.). The detection probabilities (P (Y;:s| Z;., W) for each
species s) depend on the occupancy status of species s
(Z;s) and the occupancy status of other species that may be
confused for species s. We model the detection probabil-
ity based on a noisy-or parameterization (Heckerman 1989;
Shwe et al. 1991). More specifically, let d;;s be the prob-
ability that at site ¢ on visit ¢, species s is reported because
species r is present. That is, djis = P(Yies = 1|Zs =
1) = o(Wy - B,). Due to the independence assumption in
the noisy-or model, the probability of species s not being re-
ported during visit ¢ at site i (P(Y;s = 0|Z;., W;;)) can be
fully factorized. In contrast, the probability of species s be-
ing reported during visit ¢ at site ¢ cannot be fully factorized,
as shown below; in this case, we allow the leak probability
dys of species s to be the probability of an observation when
the occupancy of its parent nodes are all false.
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Structure learning and parameter estimation

During training, we learn both the graph structure and the
model parameters ({c, 3}). We start the learning by assum-
ing that the bipartite graph between Y and Z is fully con-
nected and then estimate the MSOD model parameters us-
ing Expectation Maximization (Dempster, Laird, and Rubin
1977). If we know that certain species are not easily con-
fused for each other, we can incorporate this by initializ-
ing the model structure with no cross edge between those



species. In the E-step, EM computes the expected occupan-
cies Z;. for every site 7 using Bayes rule. In the M-step, since
there is no closed-form solution, we use L-BFGS (Liu and
Nocedal 1989) to re-estimate the model parameters {c, 3}
that maximize the expected log-likelihood in Equation 1. We
use random restarts to avoid getting trapped in local optima.
We also add a constraint to the objective function during
training that encodes the fact that the detection probability
of species s from the presence of itself is always higher than
its detection probability from the presence of another species
s’ that is misidentified for species s. Without this constraint,
spurious cross-edges will be added to the model to account
for the detection of species s.
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After learning the model parameters for the model with
the fully connected structure, we refine the model struc-
ture using greedy search. More specifically, we sort all the
cross edges (i.e. pairs of misidentified species) by their av-
eraged detection probability (d..,-s) on the training data and
then greedily add cross edges according to this metric un-
til the log-likelihood on a holdout validation set does not
improve. Once we determine the structure, we retrain the
MSOD model with a fixed structure and estimate the model
parameters. In addition, we initialize the leak probability of
each species in the MSOD model to the value of the leak
probability learned by modeling each species individually
with a modified single-species OD model that contains a
learned leak probability (called the ODLP model in our ex-
periments). Furthermore, we use the Lo penalty to regularize
the model parameters (), for occupancy parameters and A4

for detection parameters).

t

Inference

The MSOD model can be used to predict the site occupancy
of a specific species s (i.e. Z;5) or a set of species, and pre-
dict the observations of species s (i.e. Yj;s) on a checklist.
The occupancy probability of site ¢ can be computed using
the following equation where Z,_, denote the occupancy
variables of all species except for species s at site 4.

P(Zis = 1|Y;, Xi, W)
2, PYi Zis =1,2Z s = 2| X, W)
Y >, P(Yi Zis = zig, Zins = zins| X, W)

Since the true site occupancy is typically unavailable for
evaluation on real-world field datasets, we evaluate SDMs
based on how well they predict the observation of a species
at a site. The probability of detecting species s at site ¢ on
visit ¢ can be computed as follows where 7r; denotes the set

of species that can be misidentified as species s.
P(Yits = 11X, Wit)
=Y P(Yis =1, Zin, = zin,|Xi, W)
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Variational Learning

The computation of expectations in Equation 1 is expensive
with large values of S since it requires summing over the
configurations of S binary variables, resulting in 2° terms.
To speed up the learning, we use the variational learning to
reduce the computational cost. The key observation is that
the inference is intractable because the detection probabil-
ity P(Yits|Z;., W;;) cannot be factorized when Y, = 1.
Therefore, we use a fully factorized lower bound to approx-
imate this detection probability based on Jensen’s inequal-
ity (Jaakkola and Jordan 1999). We introduce the variational
parameters g;:.s Where g;;.; defines a multinomial distribu-
tion (i.e. Zle Qitrs = 1) specifying the importance of each
species for detecting species s on visit ¢ at site i.

log P(Yits = 1|Z;., W)

S
= IOg (]_ — exp ( — 9()5 - Z Zirﬂm,s))
r=1
S
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where 6gs = —log(1 — dos), Oitrs = —log(l — dyrs),

f(z) = log(1 — exp(—=x)) is a concave function. Now the
detection probability is in the fully factorized form.

During learning, instead of maximizing the expected log-
likelihood in Equation 1, we maximize its lower bound ap-
proximation Q* by plugging in the lower bound of the
detection probability P(Y;:s = 1|Z;., W;;) (Singliar and
Hauskrecht 2006). The variational EM iterates between up-
dating the variational parameters ¢;-s and the expected oc-
cupancy Z;, in the E-step and optimizing the model param-
eter {a, B} in the M-step until it converges.
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Evaluation and Discussion

Evaluation of OD models and their variants is challenging
because field data like eBird does not include the ground
truth of site occupancy, and we do not have access to the
true model structure representing the “correct” species con-
fusions. To evaluate the quality of the occupancy modeling



component of the models, we use synthetic data and com-
pare the learned model to the true model used to generate the
data in predicting site occupancies and observations. Then
on eBird data, we show the model structures learned for
three case studies using sets of species known to be con-
fused for each other and compare the performance of differ-
ent models at predicting observations on a checklist.

Synthetic dataset

For the synthetic data experiments, data is generated for
1000 sites where the number of visits per site is randomly
chosen from 1 to 3 with probability 50%/25%/25%. There
are 4 occupancy covariates and 4 detection covariates drawn
i.i.d from a standard normal distribution. The occupancy and
detection processes in this data are linear functions of their
respective covariates. A true structure over 5 species is gen-
erated by randomly adding 7 cross-edges (in addition to the
five ’straight’ or "self” edges). Coefficients for the occupancy
and detection models are also drawn i.i.d from standard nor-
mal distributions and the leak probabilities for all species
are set to be 0.01 as background noise. Furthermore, we
constrain the detection probability of a species s due to the
presence of another species confused for s to be smaller than
the detection probability due to the presence of the species
s itself. Training, validation, and test datasets are generated
following the generative MSOD model, and this entire pro-
cess is repeated 30 times to generate 30 different datasets.
This synthetic data is denoted by “Syn” in the results.

To test the robustness of the MSOD model, we also gen-
erate data from models that differ from the assumptions of
the MSOD model. First, we generate synthetic data with in-
teractions between species occupancies, simulating species
competition and mutualism. In particular, we assume species
1 and 2, and species 3 and 4 are pairs of competitors. The
occupancy probability of species 2 at a site will be halved
when species 1 occupies that site; the same behavior oc-
curs with species 3 and 4. Also, we assume species 3 and
5 have a mutualistic relationship and the occupancy proba-
bility of species 5 will increase by 20% at a site when species
3 occupies that site; we truncate the occupancy probabil-
ity at 1 when it goes beyond 1. We denote this synthetic
data with occupancy interactions “Syn-1" in the results. The
second alternative data generation process is denoted “Syn-
NL.” In this setting, we generate synthetic data with non-
linear occupancy covariates. More specifically, we generate
the non-linear occupancy covariates (X)) from the origi-
nal occupancy covariates (X;.) using the following trans-
formations: X/, = sin(X;; + 1), X}, = exp(X;e — 1),
X/s = X3 - X4, and X/, = X,4. In the last data gener-
ation scenario, we make the synthetic data the most chal-
lenging by adding both species occupancy interactions and
non-linear occupancy components (denoted “Syn-I-NL”).

We compare the standard OD model against the exact in-
ference (MSOD-E) and the variational inference (MSOD-V)
MSOD models in terms of predicting occupancy (Z) and ob-
servation (Y). In addition, we include results for a variant of
the OD model called ODLP, which includes a learned leak
probability in the OD model, and the ground truth model
that generated the data (called TRUE). We tune the regu-

larization terms of the occupancy (A,) and detection (\g)
processes in the OD and ODLP models over the set of val-
ues {0.01,0.1, 1, 10} based on the performance of the occu-
pancy prediction on a holdout dataset. Instead of tuning the
regularization terms of every species in the MSOD model
separately, we run a less time-consuming pre-processing
step in which we fit an OD model to each species individ-
ually and set the regularization terms in the MSOD model to
the best value found by the OD model of that species.

Table 1: The AUC (and the standard errors) of occupancy
and detection prediction averaged over 30 datasets in the
synthetic experiments. The metrics are computed per species
and averaged across species. Boldface results indicate the
best performing model. x and } indicate the MSOD model is
statistically better than the OD model and the ODLP model
respectively using the paired t-test.

Syn dataset
| Model Occupancy (Z) | Observation (Y)
TRUE 0.941 £ 0.004 0.783 £ 0.004
OD 0.849 + 0.006 0.751 £ 0.005
ODLP 0.868 + 0.006 0.752 £ 0.005

MSOD-E | 0.937 + 0.005*" 0.777 + 0.004*"
MSOD-V | 0.908 + 0.007*f 0.768 + 0.005*
Syn-I dataset

| Model Occupancy (Z) | Observation (Y)
TRUE 0.943 £+ 0.003 0.776 £ 0.003
OD 0.842 + 0.005 0.744 £+ 0.004
ODLP 0.865 + 0.005 0.746 £+ 0.004

MSOD-E | 0.928 + 0.004*f 0.766 + 0.004*"
MSOD-V | 0.899 + 0.008*f 0.757 £ 0.005*
Syn-NL dataset

| Model | Occupancy (Z) | Observation (Y)
TRUE | 0.937 &£ 0.003 0.777 £ 0.005
OD 0.837 £ 0.007 0.739 £ 0.005
ODLP | 0.848 + 0.007 0.741 4+ 0.005

MSOD-E | 0.907 + 0.006*" | 0.755 + 0.004**
MSOD-V | 0.874 + 0.008** 0.748 4+ 0.007

Syn-I-NL dataset

| Model Occupancy (Z) | Observation (Y)
TRUE | 0.938 & 0.003 0.768 £ 0.003
OD 0.832 £ 0.003 0.731 £ 0.005
ODLP | 0.841 + 0.006 0.732 + 0.004

MSOD-E | 0.897 + 0.006*" | 0.739 + 0.005*"
MSOD-V | 0.866 + 0.010** 0.736 + 0.004

In Table 1, we report the area under the ROC curve (AUC)
averaged over 30 datasets; in each dataset, the AUC is com-
puted per species and averaged across species. On all four
synthetic datasets, the standard OD model performs poorly
because the no false positives assumption does not hold. The
ODLP model improves slightly over the OD model because
it allows false positives to be explained by the leak probabil-
ity, but the leak probability itself cannot accurately capture
the noise from the detection process due to species misiden-
tification. The performance of the MSOD model is closest to



the true model in predicting both occupancy and detection.
As we allow species occupancy interactions and non-linear
occupancy components in the data, the performance of the
MSOD model decreases slightly, but it is still statistically
better the OD and ODLP models. Furthermore, the MSOD
model is more sensitive to the non-linear occupancy com-
ponents in the data (about 3% decrease in terms of AUC in
occupancy prediction) than the species occupancy interac-
tions (1% decrease).

The OD and MSOD models differ greatly in their perfor-
mance when predicting occupancy even though their perfor-
mance when predicting detection is fairly close. This differ-
ence indicates that the values of the latent occupancy vari-
ables are indeed distinct from the values of the detection
variables. Consequently, modeling occupancy as a separate
latent process from detection is important, especially when
other species can be mistakenly reported for the true species.

To compare the learned model structure to the true model
structure, we compute the structural AUC, which specifies
the probability of ranking a true cross edge over an incor-
rect cross edge in the learned adjacency matrix. To calculate
the structural AUC, we flatten the learned adjacency matrix
and the true structure into two vectors and then calculate
the AUC value from these two vectors. A structural AUC
value of 1 indicates that the learning algorithm correctly
ranks all the true cross edges over the other cross edges
in the model. In Table 2, we report the structural AUC for
the learned model structure on the four synthetic datasets. In
the simplest case with the ”Syn” dataset, the MSOD model
achieves the structural AUC value of 0.989. As the synthetic
data varies from the MSOD assumptions, the structural AUC
of the learned model structure only decreases slightly. In the
most challenging case, the learning method can still achieve
the structural AUC value of 0.970, indicating that the MSOD
model almost always discovers the correct cross edges cor-
responding to species confusions in our synthetic datasets.

[ Syn | Syn-I | Syn-NL | Syn-I-NL |
[0.99 £ 0.01 | 0.98 £ 0.01 | 0.97 £ 0.01 | 0.97 £ 0.01 |

Table 2: The structural AUC (and its standard error) for the
learned model structure of the MSOD model compared to
the true model structure in four synthetic experiments. The
structural AUC values are averaged over 30 datasets in each
experiment.

Next, we compare the running time and prediction perfor-
mance between the exact inference and the variational infer-
ence. First, we generate synthetic datasets for an increasing
number of species S where S € [2,8]. For a dataset of .S
species, we randomly add S pairs of misidentified species
and report the running time of one random restart of EM
iteration in Figure 3 (a). As expected, the running time of
the exact inference grows exponentially with the number
of species, while the variational inference grows linearly.
Then, we evaluate the prediction performance of the exact
and variational inference with increasing complexity of the
model structure. We generate synthetic datasets of 5 species

and gradually increase the number of cross edges added
from O to 10 with an increment of 2. We report the differ-
ence of occupancy prediction against the true latent model
in Figure 3 (b). As the model structure gets more complex,
the exact inference is very stable and robust, while the per-
formance of the variational inference decreases slightly. The
choice of exact or variational inference in the MSOD model
will depend on application-specific trade-offs between run-
ning time and prediction performance.

Run time Occupancy prediction
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Figure 3: (a) The running time of the exact and variational
inference with increasing number of species. (b) The differ-
ence of occupancy prediction against the true latent model
(A AUC) with increasing complexity in the model structure.
Both results are averaged over 10 datasets.

eBird dataset

We also test the ability of the MSOD model to discover
species misidentifications on three case studies involving
real-world eBird data, using species selected by experts at
the Cornell Lab of Ornithology. We evaluated the MSOD
model on subsets of eBird species that include pairs of
species known to be confused for each other and a distractor
species with minimal similarity to the others. The case stud-
ies include: Sharp-shinned Hawk and Cooper’s Hawk (with
Turkey Vulture as the distractor species), Hairy Woodpecker
and Downy Woodpecker (with Dark-eyed Junco as the dis-
tractor species), and Purple Finch and House Finch (with
Yellow-rumped Warbler as the distractor species).

In the experiment, we use data from California in the
year 2010 since eBird participation in California is high. We
group checklists (of which species were observed on a par-
ticular bird-watching event) within a radius of 0.16 km of
each other into one site, and each checklist corresponds to
one visit at that grouped site. The radius is set to be small so
that the site occupancy is constant across all the checklists
associated with that grouped site. There are a total number of
3140 sites after grouping in California. For sites with more
than 20 visits, we randomly sample 20 of them to include in
the data. In our experiment, we use 19 occupancy features
(e.g. population, housing density, housing vacancy, eleva-
tion and habitat class) and 10 detection features (e.g. time
of day, season, observation duration and distance travelled).
For more details on the eBird covariates, we refer the readers
to the eBird Manual (Munson et al. 2009).



To alleviate the effect of spatial autocorrelation in creating
training and test data, we superimpose a checkerboard over
the data from California, with approximately 10 km x 10 km
grid cells. If we “color” the checkerboard black and white,
data points falling into the white cells are grouped together
as the test set. Each black cell is further subdivided into a 2-
by-2 subgrid so that data falling into the top left and bottom
right subgrids form the training set and data falling into the
top right and bottom left form the validation set.

Discovering species misidentifications To fit the MSOD
model to eBird data, we first estimate the leak probabil-
ity of each species by applying the ODLP model. Then
we fix the leak probabilities of all species in the MSOD
model and estimate the model structure and parameters as
described previously. We show the learned model structures
in Figure 4. The arrows specify the species confusions re-
covered by the MSOD model, e.g. Sharp-shinned Hawk and
Cooper’s Hawk are confused for each other, Hairy Wood-
pecker is likely to be confused for Downy Woodpecker, and
Purple Finch is likely to be confused for House Finch. For
all three cases, the structure recovered matches our expecta-
tions, and the confusion probability is higher on the arrow
from the rarer species of the two to the more common one,
indicating that inexperienced observers tend to misidentify
the rarer species for the more common ones. Confusing rare
species for the common ones often happens within entry-
level observers, as they may not be aware of the rare species
due to their lack of bird knowledge. Confusing the common
species for the rare ones often happens within birders with
certain birding skills as they are aware of the rare species,
but lack the skills to distinguish them, thus resulting in an
over-estimated distribution of the rare species.

Predicting checklist observations Since ground truth on
species occupancy is not available, we use the prediction of
observations as a substitute. After learning the structure, we
re-estimate the MSOD model using data in both the training
and validation sets and predict the observations on check-
lists in the test set. We create 30 different train/test splits by
randomly positioning the bottom left corner of the check-
board. Then we compare the MSOD model against the OD
and ODLP models. In Table 3, we report the AUC and accu-
racy of predicting detections for the three case studies. The
MSOD model results in statistically significant improve-
ments in AUC on 6/6 species compared to the OD model
and 5/6 species compared to the ODLP model.

Conclusion

We introduce the Multi-Species Occupancy-Detection
model to identify species misidentifications. Our experi-
ments show that the model is not only capable of identifying
groups of misidentified species but it also improves predic-
tions of both species occupancy and detection. These results
are promising for our goal of improving data quality for cit-
izen science data by identifying difficult species for citizen
scientists. Furthermore, the ability to accurately predict oc-
cupancy can improve species distribution models for conser-
vation projects. For future work, we will investigate scaling
up the model to even larger numbers of species and sites.

Sharp-shinned Hawk Cooper’s Hawk Turkey Vulture

(a) Hawks case study

Hairy Woodpecker Downy Woodpecker Dark-eyed Junco

(b) Woodpeckers case study

Purple Finch House Finch

Yellow-rumped Warbler

(c) Finches case study

Figure 4: An arrow from species A to species B indicates
that the MSOD model learns that the presence of species A
affects the detection of species B.

Table 3: The AUC of observation prediction for three eBird
case studies. Boldface results indicate the best model, x and
1 indicate the MSOD model is statistically better than the
OD and ODLP model respectively using the paired t-test.
Hawks case study

| Model | Sharp-shinned Hawk | Cooper’s Hawk
OD 0.725 4+ 0.005 0.765 + 0.003
ODLP | 0.737 £ 0.005 0.770 £ 0.005

MSOD | 0.757 + 0.003*" 0.780 + 0.002*"

Woodpeckers case study
| Model | Hairy Woodpecker | Downy Woodpecker
OD 0.833 4+ 0.004 0.761 4 0.004
ODLP | 0.837 £ 0.004 0.769 £ 0.004

MSOD | 0.843 + 0.002* 0.783 + 0.002*

Finches case study

| Model | Purple Finch | House Finch
OD 0.807 4 0.003 0.758 + 0.003
ODLP | 0.808 £ 0.003 0.762 + 0.003

MSOD | 0.817 + 0.002*" 0.775 + 0.001*1
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